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Abstract 
Researchers who have access to data from only a single treated group currently have 
limited options for attempting causal inference. Appropriate comparison groups, which 
can be useful in isolating the effect of a program, are oftentimes unavailable, as in the 
case of universal policy implementation. A possible alternative to current single-group 
designs exists in machine learning (ML), which has only recently gained traction as a 
tool in social science. New developments in ML have resulted in improvements in 
predictive accuracy that make artificial counterfactual prediction a viable technique in 
cases of treated-only data; however, evaluations of the internal validity of this 
technique are lacking: only one exists, and it is in the context of energy use with highly 
granular, hourly data. This study uses XGBoost, a popular ML algorithm, along with 
lower-frequency, monthly data from the treated households of an RCT evaluating the 
effect of water-efficient technologies in rural Costa Rica in order to create household-
by-month predictions for what water consumption would have been in the post-
treatment period if treatment had not occurred. These artificial counterfactuals are 
used to derive a treatment effect estimate, which is then compared, in within-study 
comparison (WSC) fashion, against the treatment effect estimate from the RCT. I find 
that the ML counterfactual prediction method is able to produce a treatment effect 
estimate with the same sign as the experimental one, and that is considered equivalent 
according to a range of popular correspondence measures. However, comparison 
against alternative single-group designs reveals that a parallel counterfactual prediction 
approach using OLS as the predictive model rather than XGBoost is able to produce an 
even closer estimate, suggesting that a simpler model may be more appropriate.
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1. Introduction 

	 While randomized control trials (RCTs) are the theoretically preferred research 
design for causal inference in program evaluation, they are often difficult to implement 
in practice due to rigid design requirements, ethical concerns, time constraints, and 
budgetary limits. Consequently, researchers have developed quasi-experimental (QE) 
methods such as difference-in-difference (DID), comparative interrupted time series 
(CITS), and regression discontinuity (RDD) to make causal analysis possible in 
situations where RCTs are not feasible, yet these types of “natural experiments” rely on 
the fortuitous existence of an appropriate comparison group. Unfortunately, such a 
group may be unavailable, especially in cases of uniform policy implementation where 
a treatment is applied to an entire population.

	 While single-group designs such as the pretest-posttest design and single 
interrupted time series (SITS) do exist, and require no comparison group, these 
methods tend to have low internal validity because they are especially vulnerable to 
bias (Ambroggio et al., 2012). One way internal validity can be assessed is through 
design replication studies, or within-study comparisons (WSCs), in which a researcher 
compares the treatment effect estimate derived from an RCT against the treatment 
effect estimate derived from a QE design that uses the same target population (Wong & 
Steiner, 2018). WSCs of existing single-group designs have not been able to establish 
frequent validity (Baicker & Svoronos, 2019). 

	 An emerging, alternative option for researchers who require a single-group 
design is machine learning (ML). Due to its ability to make accurate predictions, ML has 
many applications in a broad range of industries including advertising, finance, and 
healthcare; for this same reason, it is a promising tool for scholars in economics and 
public policy who are often limited to observational data by circumstance, but still 
require credible counterfactuals in order to estimate treatment effects (Mohri et al., 
2012; Varian, 2014). In situations where high-quality data is available, a researcher can 
direct an ML algorithm to perform a supervised learning task, during which the 
algorithm trains a model on a subset of labeled inputs by learning the relationships 
between covariates and the desired output (Mohri et al., 2012). The researcher can 
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then use that model to create predictions about the outcomes of another subset of 
unlabeled inputs. In training a model on pre-treatment data, and using the fitted model 
to generate predictions about post-treatment outcomes, a program evaluator may 
generate counterfactuals that can then be used to estimate a treatment effect. 

	 In this paper I use XGBoost, a popular ML algorithm, to generate predictions for 
post-treatment monthly water use for the treated households of an RCT had they not 
received the treatment. These households in rural Costa Rica were randomly selected 
to receive water-efficient shower heads and faucet aerators that reduce the volume of 
water expelled per minute. My ML model is trained on pre-treatment monthly water 
use, household characteristics, and weather. Using the trained model, I then create a 
prediction for each household’s post-treatment water use, which serves as my 
counterfactual. I use these artificial counterfactuals in a fixed effects model to produce 
an estimate of the effect of the installation of the water-efficient technologies on 
monthly water consumption. Finally, using a WSC framework, I compare this treatment 
effect estimate against the experimental one in order to assess the validity of this 
emerging method. If able to replicate experimental results, this ML-generated 
counterfactual method could present a favorable option to researchers who have 
access to data from a single treated group only.

	 Using the Steiner & Wong (2018) correspondence test as my primary measure of 
similarity, I find that the treatment effect estimate resulting from the ML counterfactual 
prediction method corresponds to the experimental estimate. This conclusion holds 
under several alternative methods of correspondence testing; however, comparison 
against alternative single-group designs reveals that a non-ML counterfactual 
prediction approach using OLS as the predictive model is able to produce an ATE 
estimate even closer to the experimental one.

	 In the following section I present a summary of the existing WSC and ML 
counterfactual prediction literature. In Section 3 I describe the data used for analysis. In 
Section 4 I explain the empirical methods used, including a description of the ML 
counterfactual prediction method, treatment effect estimation, and WSC design. In 
Section 5 I detail my results, and in Section 6 I discuss their interpretation and 
implications. Section 7 concludes.  
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2. Previous Literature 

2.1 Within-Study Comparisons 

	 LaLonde is credited with performing the first design replication study. His 1986 
evaluation of the National Supported Work Demonstration (NSW) assessed the ability 
of quasi-experimental techniques using several non-equivalent comparison groups 
(NECGs) to replicate the results of an RCT. In comparing his quasi-experimental 
treatment effect estimates against an RCT-derived “benchmark” estimate, LaLonde 
originated an approach that researchers still use to test the validity of other quasi-
experimental study designs.


2.1.a Evaluations of Two-Group Research Designs 

	 Design replication studies, or within study comparisons (WSCs), as they are now 
more commonly known in the associated literature, have come a long way since they 
were first introduced by LaLonde. In Wong et al.’s (2018) review of recent WSCs, the 
authors identified sixty-six such studies performed between 1986 and 2017. These 
studies evaluated the use of quasi-experimental techniques in a wide range of settings, 
including development, education, environment, job training, and health (Wong et al., 
2018). The majority of the WSCs assess quasi-experimental techniques with 
comparison groups such as DID, CITS, or RDD (Wong et. al, 2018). 

	 Generally, these two-group techniques have been shown to be able to replicate 
experimental results  when implemented correctly  (Cook et al., 2008; St. Clair et al., 1 2

2014; St. Clair et al., 2016; Cook et al., 2020; Coopersmith et al., 2022). Two-group 
designs are appealing from the standpoint of internal validity because they include 
comparison groups (Shadish et al., 2002); however, there are many situations in which 

 While each cited author found that one or more of their chosen quasi-experimental method(s) were 1

able to replicate the corresponding RCT benchmark in the context of their specific study, there is 
currently no field-wide standard for how close the quasi-experimental estimate must be to conclude 
correspondence. See section 4.3.b for a more detailed discussion of correspondence criteria and 
measures.

 See section 4.3.a for a discussion of the criteria for a successful WSC.2

5



a researcher will not have access to an appropriate comparison group, as with 
universal policies.


2.1.b Evaluations of Single-Group Research Designs 

	 In instances where a comparison group is not available, researchers currently 
have limited options. Two such options are the pretest-posttest design and single (or 
simple) interrupted time series (SITS). These single-group techniques seem to be less 
popular in practice than two-group designs, and, as a result, there are fewer WSCs 
involving these methods. The infrequent use of single-group techniques is likely 
because these methods are inherently susceptible to additional biases that two-group 
techniques are designed to control for (Shadish et al., 2002; Fretheim et al., 2015; St. 
Clair et al., 2016). Not surprisingly, of the four WSCs I was able to identify that 
compared the results of SITS to an RCT benchmark, two found instances where SITS 
did not produce concordant estimates of the treatment effect. 
3

	 The major threat to internal validity that single-group designs face is history, or 
the possibility that events other than treatment could have affected the outcome of 
interest in the post-treatment period (Shadish et al., 2002; Fretheim et al., 2015). While 
the internal validity of the ML artificial counterfactual prediction method I will discuss is 
still susceptible to this threat, the resulting estimates have the potential to improve on 
SITS because one need not make the assumption that the pre- and post-treatment 
time trends are modeled by a linear combination of parameters (Baicker & Svoronos, 
2019). 


2.2 Machine Learning 

	 Varian (2014) espouses machine learning (ML)’s potential as a tool for 
economists, who are often concerned with uncovering relationships, working with large 
datasets, and/or making predictions. Predictions generated by novel ML methods are 
of especial interest because certain algorithms allow for flexible, nonlinear interactions 

 Both of the studies that found SITS was able to replicate RCT results were drug trials (Fretheim et al., 3

2013; Shadish et al., 2016), and one, Shadish et al. (2016), used data from only 6 cases, which is a much 
smaller sample size than is typical for econometricians. The only WSC of SITS I could find in social 
science literature found that SITS did not reproduce the RCT results (Baicker & Svoronos, 2019).
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between covariates (Varian, 2014), and these nonlinear models often have greater 
predictive accuracy than linear models (Amiri et al., 2020; Prest et al., 2023; Chen, 
2021). 


2.2.a ML Counterfactual Prediction Methods and Model Selection 

	 Recent papers have capitalized on the accuracy improvements offered by ML 
and have used ML prediction methods as a way to generate counterfactuals. While 
some of these studies use linear models from algorithms such as LASSO or matrix 
completion to generate their predictions (Burlig et al., 2020; Dueñas et al., 2021; Athey 
et al., 2021), many others use algorithms that create nonlinear models such as neural 
networks, random forests, LightGBM, or XGBoost (Hartford et al., 2016; Christiansen et 
al., 2021; Souza, 2022; Zhang et al., 2022; Prest et al., 2023). Models produced by the 
latter algorithms—neural networks, random forests, LightGBM, and XGBoost—are 
considered non-interpretable models (Weller et al., 2021).

	 A common qualm economists have about ML is that the resulting models can be 
somewhat of a “black box” and, unlike traditional regression models, “don’t offer 
simple summaries of relationships in the data” (Varian, 2014). This is true: in choosing 
ML, one must often sacrifice some degree of interpretability; however, a tradeoff 
typically exists between interpretability and accuracy. In studies that use ML 
counterfactual prediction methods, for which the researcher is concerned primarily with 
predictive accuracy rather than the interpretation of any one coefficient of group 
thereof, an accurate—although non-interpretable—model is appropriate (Raschka & 
Mirjalili, 2019; Weller et al., 2021).


2.2.b WSCs of ML-Generated Counterfactuals 

	 Because more accurate counterfactual predictions are able to yield more 
accurate program effect estimates (Varian, 2014), ML-generated artificial 
counterfactuals may provide a promising alternative to researchers who wish to 
attempt causal inference in instances where appropriate comparison group data is 
lacking. As discussed earlier, one method of validating novel non-experimental 
techniques is a WSC.
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	 I am aware of only one WSC that compares treatment effect estimates from ML-
generated counterfactuals with an RCT benchmark (Prest et al., 2023). In this study, the 
authors compare the average treatment effect (ATE) estimate from an RCT—the 
“benchmark” estimate—with those derived from two-way fixed effects regressions 
using either a NECG or ML-generated counterfactuals. They find that, when there is 
data only from treated households, XGBoost’s counterfactual predictions are able to 
replicate the experimental benchmark, both when there is a true treatment effect and 
when there is no true effect. The authors highlight the use of rich data in ML, and 
explain that, because treatment was implemented in windows of three hours, they used 
hourly data by necessity, and could not aggregate to a weekly or monthly level to 
compare algorithm performance. Prest et al. (2023) provides some evidence of validity 
for the ML-generated artificial counterfactual method; however, it is unclear in which 
other contexts and data conditions this method is likely to be valid.


2.3 Contributions 

	 While I also perform a WSC of ML artificial counterfactual methods, unlike Prest 
et al. (2023), I am concerned with water consumption rather than electricity usage. 
There are previous papers that use ML methods to predict water consumption (Walker 
et al., 2015; Shuang & Zhao, 2021; Kalashak, 2021; Dailisan et al., 2022; Kesornsit & 
Sirisathitkul, 2022), but most are at the city or region level rather than household, none 
predict counterfactuals in order to estimate a treatment effect, and certainly none 
perform WSCs. Also, unlike Prest et al. (2023), I use monthly observations rather than 
hourly. While highly granular data may often be available in energy, hourly data—or 
minutely, as the authors had before aggregation—is much more uncommon in other 
fields. Therefore, my main contributions are as follows: 1) I build on emerging ML 
artificial counterfactual prediction methods by using lower-frequency data to create 
predictions for monthly water use, and 2) I use a WSC framework to evaluate the ability 
of ML methods in these novel circumstances to uncover the benchmark treatment 
effect estimate derived from an RCT.
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3. Data 

	 I use data from a randomized experiment conducted by a research team from 
the Tropical Agricultural Research and Higher Education Center (CATIE), an academic 
center that studies development and environmental programs in Central America. 
1,310 households across 9 communities in rural Costa Rica participated in the RCT, 
which was designed to measure the effect of water-efficient shower heads and faucet 
aerators on monthly water consumption. In addition to the RCT data, I use historical 
weather data from Visual Crossing, an online weather database.


3.1 RCT Benchmark 

	 The CATIE RCT that I use as my benchmark was evaluated by Alpízar et al. 
(2023), and the treatment effect estimate using the full sample (both treated and control 
households), will serve as the experimental estimate by which I will evaluate the 
success of my ML-generated artificial counterfactual approach. 

	 To obtain a sample of households for the experiment, CATIE researchers 
contacted communities whose water distribution systems are run by a community-
based water management organization (CBWMO), and identified candidate ones 
according to three criteria:


1. Their CBWMO measured water use via meters and applied variable-rate 
pricing.


2. Their CBWMO had monthly household water use records dating back to 
2012 and were willing to share them.


3. Their CBWMO would agree for the CATIE project team to install the water-
efficient technologies randomly and were willing to share post-treatment 
monthly household water use data.


Of the 66 CBWMOs that CATIE contacted, 10 met these criteria, and 9 were selected 
to be used in the experiment. These 9 communities had a total of 2,246 customers, of 
which 1,898 were non-vacant, individually-metered residential properties. CATIE teams, 
each of which consisted of one interviewer and one plumber, approached all such 
households between May and July 2015, and were able to contact 1,346 of them. The 
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interviewer read a script that introduced the team members, informed the head of 
household about a CATIE climate study regarding local weather changes and their 
expected impact on water conservation, described and showed a video of the two 
water-efficient technologies, and offered to install the technologies for free if their home 
was randomly selected. 1,310 households agreed to have the CATIE team install the 
technologies same-day if they were selected. These 1,310 households comprise the 
experimental sample.

	 Households were randomized into one of three treatment arms depending on 
which color chip the resident selected at random out of an opaque bag. According to 
this procedure, 440 households were randomized into the control group and did not 
receive the technologies, 432 were randomized into the “no bonus" treatment group, 
and 438 were randomized into the “bonus" treatment group. Both households in the 
“no bonus” and “bonus” treatment groups received the technologies, but households 
in the “bonus” treatment group were offered a bonus of $38 USD if they still had all 
technologies installed at an unannounced follow up within the next 6 months. The 
bonus group is the focus of another study; for the purposes of this study I combine the 
two “no bonus” and “bonus” treatment arms into one treatment group.


3.2 ML Data 

	  To recreate the constraints a researcher would face when using observational 
data in which all units were treated, I perform the entire ML approach using data only 
from the treated households of the RCT. These data include households’ 
socioeconomic and demographic information, home characteristics, community, as 
well as month and year of measurement. These variables, in addition to community-
level weather ones, are used to train an ML model designed to predict monthly water 
consumption.  
4

	 Weather data were obtained from Visual Crossing, an online weather database 
that integrates data from local weather stations with NASA satellite and doppler radar 
data to provide a range of daily weather measures for most locations across the world 

 While household characteristics are constant across the entire study period, the inclusion of monthly 4

weather variables and month dummies allow for month-to-month variation in predictions.
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(Visual Crossing, 2020). For each of the nine communities, daily data on maximum 
temperature, minimum temperature, mean temperature, precipitation, humidity, cloud 
cover, and UV index were extracted. These measures were aggregated to a monthly 
level and then merged with the RCT data on community. Summary statistics for both 
these weather variables and some of the household characteristics are presented in 
Table 1. 


Table 1. Summary Statistics 
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4. Methods 

	 In this section I detail my empirical approach. First, I explain the general 
structure of a supervised ML learning task and best practices when training an ML 
model. Next, I describe the supervised learning task as it applies to my study, as well 
as the specific ML algorithm used. I then explain how the fitted ML model is used to 
generate household-by-month counterfactual predictions, and how these predictions 
are used to estimate a treatment effect. Finally, I describe the criteria for a successful 
within-study comparison, assess the extent to which my study meets each criterion, 
and evaluate different measures of correspondence.


4.1 Machine Learning 

	 Machine learning can be used to perform tasks in a variety of learning scenarios, 
including supervised learning, unsupervised learning, and semi-supervised learning  5

(Mohri et al., 2012). In supervised learning tasks the programmer provides the chosen 

algorithm with data on both inputs—called features (analogous to independent 

variables in standard regression models)—and the desired output—called the label 
(analogous to the dependent variable)—for a given number of observations or cases—

called examples. This series of labeled examples is known as the training set, on 
which the algorithm fits a model by learning the combination of relationships between 

the features and labels that minimizes a certain loss function,  which measures the 6

difference between predicted and actual labels (Mohri et al., 2012). Given feature data 

for a series of unseen examples—known as the test set—the fitted model can then be 
used to create a predicted label for each case. Quantitatively comparing the test set 
label predictions to the actual, unseen labels allows the programmer to evaluate the 


 In unsupervised learning tasks all examples are unlabeled, and in semi-supervised learning tasks the 5

learner receives a mix of both labeled and unlabeled examples (Mohri et al., 2012).  Because I have 
monthly water consumption data available for all households, at least for a large majority of the sample 
period, my approach is considered a supervised learning task.

 Common loss functions are mean squared error (MSE or L2 loss) and mean absolute error (MAE or L1 6

loss).
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model’s performance via a score . 
7

	 A programmer can improve a model’s performance via tuning, during which 

they adjust the values for their chosen algorithm’s hyperparameters , which control 8

the learning process. Tuning should be performed using a validation set, a subset of 
the training data that is held out for evaluation during tuning, but is separate from the 
true holdout test data that is used to produce the final model score (Mohri et al., 2012). 
Since the validation set is also held out during model training, the validation score 
provides an estimate of the test score. Further, since it is separate from the true test set 
that is held out until tuning is completed, repeatedly refitting a model with different 
hyperparameters to maximize the validation score will not invalidate the model by 
biasing the test score. Rather, one should then be concerned about overfitting. 

	 Using a single set of training and validation data to train and tune a model often 

leads to overfitting, where an algorithm learns an overly complex model that performs 
extremely well on the particular data it has seen (i.e. the specific training and validation 
sets used for training and tuning), but poorly on unseen data (i.e. the holdout test set) 

(Mohri et al., 2012). A programmer can combat overfitting by using K-fold cross 

validation (CV). In K-fold CV the data is split into K subsamples, or “folds”, where a 
single fold is held out as the validation set and used to calculate a model score while 
the other K-1 folds make up the training set. This process is repeated K times, typically 
without shuffling in between, until each fold has been used once as the validation set. 
An overall model score can be produced as an average of the score produced from 
each split (Pedregosa et al., 2011). K-fold CV helps to prevent overfitting by allowing a 
programmer to select a model with the best out-of-sample performance across K 
different unseen splits, rather than just one split. 

	 I will now detail the supervised learning task as it is applied to my data, as well 
as the specific ML algorithm that is used for model training. 


 The programmer must select the measure(s) that will be used to evaluate model performance. For 7

regression problems, scoring methods include R2, negative MSE, negative RMSE, negative mean 
absolute error, or negative median absolute error. A full list of the model scoring methods available via 
Python package scikit-learn can be viewed in the package’s documentation on model selection.

 Hyperparameters and their purposes vary by algorithm. See section 4.1.a for a discussion of my 8

chosen algorithm’s hyperparameters.
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4.1.a Model Training 

	 Because my aim is to use a fitted ML model to generate predictions for monthly 

water use in the post-treatment time period for treated households in the event that 
only treated data is available and as if no treatment had occurred, I must train, tune, 
and test my model on only pre-treatment data from only the treated households. Using 
data from only the treated households recreates the constraints a researcher would 
face when using single-group treated-only data, and using exclusively pre-treatment 
examples to create the fitted model ensures that only the pre-treatment relationships 
between covariates and water use are learned.

	 Therefore, I train my ML model on only pre-treatment examples—between 
January 2013 and April 2015—from the treated households of the original RCT. To 
ensure that the algorithm sees data from every month and a representative sample of 
values for the label when training the model, I use Python package scikit-learn to 
perform a stratified split where, within each pre-treatment month, the training and test 
sets are balanced on bins of every 5th centile for average monthly household water. 
Following the stratified split, I proceed with training a model using ML algorithm 
XGBoost.

	 XGBoost stands for “Extreme Gradient Boosting” and is a gradient-boosted tree 
algorithm that can be used for both classification and regression problems. 
Classification and regression trees (CART) are grown by recursively partitioning data 

along the available inputs, where observations are sorted at each decision node into 

one of two branches according to their values for that input. Observations are split at 

the input variable and value that optimize the objective function, a linear combination 
of the loss function and a regularization term that penalizes complexity to avoid 
overfitting. The predicted outputs are obtained from the sample average of 

observations in each terminal node, or leaf. Instead of growing only a single 
classification or regression tree, XGBoost grows an ensemble of trees sequentially, 
where each successive tree is estimated on the residual of the previous tree to correct 

that tree’s errors—this is called boosting. The weight of each new tree is scaled 

between boosting rounds by a factor  to reduce the importance of any one tree—this η
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is called shrinkage. The final XGBoost model is the aggregation of the weighted trees. 
(Chen & Guestrin, 2016)


	 Table 2. Hyperparameter Tuning


	 I implement XGBoost using Python package xgboost. There are a variety of 
hyperparameters that can be chosen to influence XGBoost’s learning process and 
control the resulting model’s complexity . I select values for the hyperparameters 9

shown in Table 2 by tuning via 5-fold CV. Higher values for the number of trees and 
maximum tree depth result in a more complex model, while higher values for shrinkage, 
minimum loss reduction, the two regularization terms, and the fractions of training 
examples and features sampled per tree control overfitting. All other hyperparameters 
were left at their default values.


4.1.b Generating Counterfactuals 

	 After training and tuning my ML model on the pre-treatment, treated-only data, I 
use the fitted model to generate predictions for water consumption for each household 

 A full list of the available hyperparameters, their descriptions, and default values is available in the 9

XGBoost Python package documentation. 
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for each month. These predictions are denoted . The post-treatment (June/July  10

through September 2016) predictions serve as counterfactuals—hypothetical values for 
what households’ water consumption would have been if treatment had not occurred—
because they are calculated according to the pre-treatment relationships between the 
features and water use. Absent treatment, and ceteris paribus, it is reasonable to 
assume these relationships would have persisted. The mean monthly household actual 
and ML-predicted water consumption is shown below.


Figure 1. Actual vs. Predicted Water Use 

4.2 Treatment Effect Estimation 

	 As in Alpízar et al. (2023), I seek to calculate the ATE of water-efficient 
technology installation on monthly household water use over the 16-month post-

̂Yit

 The technologies were installed in treated households in either May or June (or the first week of July; 10

these households are considered to be treated in June). For this reason, only observations though April 
2015 were used for model training. Predictions, however, were generated for all months; only those for 
households’ post-installation months represent post-treatment counterfactuals.
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Figure displays mean actual and ML-predicted household water use (in cubic meters) for 
each month. The period during which the water-efficient technologies were installed is 
shaded in gray.



treatment period.  I begin by calculating the household-by-month prediction error as 11

the difference between actual and predicted consumption, . If the water-

efficient shower heads and faucet aerators did in fact reduce households’ monthly 
water consumption, one would expect the actual consumption to be lower than the 
predicted in the post-treatment period, and, consequently, the prediction error to be 
negative. While the average prediction error across all households and post-treatment 
months would give some indication of the ATE, it does not properly account for the 
similarities that may exist in prediction errors within a given household or month.

	 As a result, I use the fixed effects model:


where post_treatit is a dummy equal to zero in pre-treatment months and one in post-
treatment months, and where householdi is a dummy for each household. The 
household fixed effects will capture the extent to which the ML prediction model 
systematically under- or over-estimates water use within each household, and the 
month dummies will capture seasonal patterns, or the extent to which the model 
under- or over-estimates water use during a given month of the year. The dummy 
variable trainit is equal to one for observations that appeared in the training set and 
zero for observations that did not. This dummy is included in order to account for the 
fact that, since the model is created in order to optimize performance on the training 
set, the prediction error of observations in the training set is expected to be smaller 
than the prediction error of observations on which the model was not trained. In order 
to match Alpízar et al. (2023), this regression is run using data only from May 2014 on, 
with the months January 2013 through April 2014 excluded. 

	 Because the dependent variable in my fixed effects model is the prediction error, 
or difference between actual and predicted water use, the estimate for β1, the 
coefficient of post_treatit, will indicate the amount by which actual water use was 
reduced in the post-treatment period relative to the counterfactuals, or the values for 
water use that would have been expected absent treatment assuming the pre-

Yit − ̂Yit

 Given potential disadoption at later dates, this estimand is not the same as the ATE of adopting and 11

keeping the technologies installed for the entire post-treatment period.

17



treatment trends that the ML algorithm learned would have persisted. Therefore,  

represents my quasi-experimental treatment effect estimate.


	 Because error is introduced in the estimate of  during both steps of the two-

step estimation strategy—first in the ML counterfactual prediction process and then 
again in the fixed effects regression—and there is no way to carry through the error of 
the first step, I perform a cluster bootstrap procedure to estimate the standard error for 

, clustered at the household-level. Within each repetition, the original panel data is 

resampled with replacement by cluster, meaning that for a household selected  times 

during resampling, and with  months of data recorded, there will be  

observations in the resampled data that are associated with that household. The ML 
counterfactual prediction method is then applied to these resampled data (save for 
tuning, which would be computationally infeasible to repeat each round), and the 
resulting predictions used in the previously-specified fixed effects regression to obtain 

an estimate of  specific to that bootstrap repetition, denoted . This process was 

repeated—first resampling, then ML counterfactual prediction, then treatment effect 
estimation via the fixed effects regression—for 250 iterations. The bootstrapped 

standard error, , is equal to the standard deviation of the bootstrap repetition-

specific coefficient estimates:


	 To ensure a fair comparison between the experimental and quasi-experimental 
estimates, the benchmark ATE was re-estimated using a fixed effects regression of the 
form:


where post_treatit is equal to one for observations corresponding to treated 

households in post-treatment months and zero otherwise. In this model,  is the 

̂β1

β1

̂β1

n

m n ⋅ m

β1 θ

SE( ̂β1)

α̂2
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treatment effect estimate, and this is the value against which I will compare my quasi-

experimental estimate, , using a within-study comparison framework.


4.3 Within-Study Comparison 

	 Dependent-arm within-study comparisons  compare the results of an RCT to 12

the results of a quasi-experiment that shares some portion, typically the treatment 
group, of the original experimental sample (Wong & Steiner, 2018). In order to be sure 
that one is making a valid comparison, and that any detected difference in the obtained 
estimates stems only from a failure of the quasi-experiment, rather than a poor WSC 
design, researchers have developed guidelines that, when followed, result in a credible 
WSC.


4.3.a Criteria for a Successful Within-Study Comparison 

	 There exist several criteria for designing a successful WSC. The criteria put forth 
by Cook et al. (2008) are as follows: (1) the WSC includes both a randomly-assigned 
counterfactual group (i.e. the control group) and a nonrandom one, (2) the experiment 
and quasi- or non-experiment estimate the same causal quantity (e.g. ATE, ITT, etc.), 
(3) the selection of the experimental sample and the quasi-experimental sample should 
not be correlated with other variables that are related to the outcome of interest, (4) 
analysts of the experiment and quasi- or non-experiment should be blind to each 
other’s results, (5), the experiment should meet the usual criteria for technical 
adequacy (e.g. proper randomization, low non-compliance), (6) the quasi or non-
experiment should meet the standard criteria for technical adequacy, and (7) some 
measure(s) of correspondence is adopted to compare the causal quantities estimated 
by the experiment and the quasi- or non-experiment. 

	 In my study context I am able to meet all but one of the criteria from Cook et al. 
(2008). My study does not compare a randomly-assigned counterfactual group to a 
nonrandom comparison group, but instead a randomly-assigned counterfactual group 
to an artificial one created from the original randomized treatment group (1). The 

̂β1

 These are in contrast to independent-arm WSCs, in which units are randomly assigned either to the 12

RCT or quasi-experimental arm, and no portion of the sample is shared (Wong & Steiner, 2018).
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experimental and quasi-experimental analyses both estimate ATE effects (2). Selection 
of the experimental and quasi-experimental samples is not correlated with any 
variables that are related to the outcome (3). I was blind to the results of the original 
experiment while developing my quasi-experimental estimate (4). The experiment and 
its analysis were conducted according to field standards (5). The ML-generated 
artificial counterfactual predictions were obtained according to best practices in ML as 
described in Section 4.1 (6). My discussion of the final criterion follows in the selection 
below.


4.3.b Measures of Correspondence  

	 As noted by Cook et al. (2008) and Steiner & Wong (2018), there exists no field-
wide standard for evaluating the similarity of the treatment effect estimate obtained 

from the RCT, denoted , and from the quasi-experiment, denoted . Some 

common correspondence criteria that have been used in the WSC literature include: 1) 

 falls within a certain number of standard deviations from , 2) the point estimate 

for  falls inside a certain confidence interval of , or 3) the confidence intervals of 

 and  overlap. Two common values used for the standard deviation criteria are 

0.1 (Cook et al., 2020; Coopersmith et al., 2022) or 0.2 (St. Clair et al., 2014; St. Clair et 
al., 2016) standard deviations. Confidence intervals, when used, are typically 95% 
confidence intervals (Fretheim et al., 2013; Fretheim et al., 2015; Ferraro & Miranda, 
2014; Prest et al., 2023), except in the case of Shadish et al. (2016), who use 
overlapping 84% confidence intervals as their correspondence criteria to reduce the 
possibility of making a Type II error (i.e. finding correspondence when there is not).

	 To create a more standardized measure, Steiner & Wong (2018) suggest a 

correspondence test, for which equivalence of the estimates is found only if there is 

both a significant equivalence, , and an insignificant difference, .


TE TNE

TNE TE

TNE TE

TNE TE

CE CD
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Table 3.  Steiner & Wong (2018) Correspondence Test 

	 


	 Significant equivalence ( ) is achieved if one can reject the null hypothesis 

that the absolute difference  is statistically significantly greater than , a 

pre-defined threshold chosen by the researcher (e.g. ). This entails a one 

sided t-test using the t-statistic , where  is equal to the standard error of 

the effect difference as obtained via bootstrap . An insignificant difference ( ) is 13

achieved if one fails to reject the null hypothesis  using the same t-

statistic as the equivalence test. This two-part correspondence test is regarded to be 
more rigorous because underpowered WSCs, which may have concluded 

correspondence given only , will instead result in an indeterminate outcome if the 

tolerance threshold for  is appropriately low. Of the five WSCs I was able to identify 

that used the the Steiner & Wong (2018) correspondence (besides those authored by 
the creators), all found indeterminacy, trivial difference, or difference in the majority of 
the correspondence tests they performed (Altindag et al., 2019; Anderson & Wolf, 
2019; Litwok, 2020; Anderson et al., 2021; Unlu et al., 2021). 

	 To evaluate the success of my ML counterfactual prediction method, I decide to 
adopt the correspondence measure proposed by Steiner & Wong (2018). I select this 
measure because: 1) it is stringent and should not result in an erroneous conclusion of 

correspondence, and 2) in combining the two separate  and  tests and allowing 

CE

|TE − TNE | δ

δ = 0.1 SD

t =
|TNE − TE |

s
s

CD

|TE − TNE | = 0

CD

CE

CE CD

 Steiner & Wong (2018) recommend bootstrapping to obtain the standard error of the effect difference 13

due to dependency between the experimental and quasi-experimental samples (since the treatment 
group is shared by both). I perform 250 bootstrap iterations for estimation of this standard error.

21



for an indeterminate result, it enables one to perform a more nuanced assessment of 

correspondence. I use a threshold of  to determine , and  as 

the significance level for both  and . In addition to the Steiner & Wong (2018) 

correspondence test, for sensitivity analysis, I present the results according to the 
second and third measures described in the first paragraph of this section .
14

5. Results 

	 In this section I present the results of the ML counterfactual prediction method 
and within-study comparison. I begin with a table summarizing the fixed effects 
prediction error regression results. After discussing the results shown in the table, I 
present the outcomes of the correspondence tests described in Section 4.3.b. Finally, 
to determine how much—if any—benefit is had from using ML over a simpler single-
group design such as counterfactual prediction method using OLS or single interrupted 
time series (SITS), I compare the results of these other methods to those of the ML 
counterfactual prediction approach.


5.1 Fixed Effects Regression Estimates 

	 The results of the randomized experiment and the results of the ML approach 
using the fixed effects prediction error regression described in Section 4.2 are shown in 
Table 4. The first column shows the results of the experiment as estimated using 
Equation 3 in Section 4.2, and the second column shows the results of the ML quasi-
experiment as estimated using Equation 1 in the same section. The coefficient of postit 
in the first column can be interpreted as the amount that monthly household water use 
changed from the pre- to post-treatment period for the control households, on 
average. This estimate’s statistical insignificance provides evidence against the 
occurrence of history, or an event concurrent with but separate from treatment that 
also affected household water use, and gives support to my belief that it is reasonable 
to assume that the pre-treatment trends persist into the post-treatment period. Further 

δ = 0.1 SD CE α = 0.05

CE CD

 The first measure (the quasi-experimental treatment effect estimate falls within a certain number of 14

standard deviations from the experimental benchmark) is already embedded in the Steiner & Wong 
(2018) correspondence test that I select as my primary measure of similarity.
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support of this conclusion can be obtained from an exercise using data from only the 
control group rather than the treated, during which the ML counterfactual prediction 
method and treatment effect estimation approach were applied to these data instead. 
This exercise is effectively a placebo test and in fact failed to find evidence of a 
statistically significant treatment effect for the control households .
15

Table 4.  Fixed Effect Regression Results  

 Results of the control group exercise are shown in appendix table A.1.15
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	 The benchmark ATE from the RCT is given by the coefficient of post_treatit in 
the first column, equal to a 2.13 cubic meter reduction in monthly household water use, 
on average. The asterisks indicate statistical significance of the estimate. The 
comparable ML quasi-experimental estimate is the coefficient of the same variable in 
the second column. As seen in the table, the ML approach yielded an estimate of an 
average reduction in monthly household water consumption equal to approximately 
1.73 cubic meters. While the point estimate given by the ML approach is the correct 
sign, true correspondence is not achieved unless the estimates are equivalent 
according to my selected correspondence test.


5.2 Correspondence Testing 

	 I present first the results of my primary measure of correspondence, the Steiner 
& Wong (2018) correspondence test. The test statistics as described in Section 4.3.b 
as well as the associated levels of statistical significance and conclusions are shown in 
Table 5. As seen in the table, the test found both significant equivalence and an 
insignificant difference, which, together, result in a conclusion of equivalence between 
the two estimates. 


Table 5.  Correspondence Test Results 

	 Steiner & Wong (2018) acknowledge that selection of the tolerance threshold  is 

discretionary, and while I did select values commonly used in the WSC literature, I do 

δ
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admit they were otherwise arbitrary. For this reason, and following the suggestion of 
Steiner & Wong (2018), I report the smallest threshold for which equivalence would still 

be concluded, which is equal to .
16

	 As one may expect given the results of this correspondence test, the ATE 
estimates are also considered equivalent according to the less rigorous measures 
described at the beginning of Section 4.1.b: the ML quasi-experimental point estimate 
falls inside the 95% confidence interval of the experimental estimate, and, 
consequently, their 95% confidence intervals overlap (Figure 2).


Figure 2. RCT Benchmark and ML Approach Treatment Effect and CIs 

5.3 Comparison to Alternative Single-Group Designs 

	 In order to determine if there is any advantage gained from using machine 
learning over a simpler approach, I present the ATE as estimated via two alternative 
single-group quasi-experimental designs (Table 6): a non-ML counterfactual prediction 

0.0661 SD

 Of note, the threshold is defined in terms of standard deviations of the outcome (water use, in this 16

context) for the control group. For the period May 2014 through September 2016 (the same period used 
for ATE estimation), the standard deviation of monthly household water consumption for the control 
group was 16.26 cubic meters, which, when considering an effect size of 2.12 cubic meters, is 
comparatively quite large.

25

Figure displays point estimates and 95% confidence intervals for the 
benchmark ATE and the ATE as estimated by the ML approach. The 
95% confidence for the benchmark is shaded.



method that uses linear regression for the prediction model, and single interrupted time 
series.


Table 6.  Benchmark vs. Single-Group Quasi-Experimental ATE Estimates 

	 The non-ML method uses the same prediction error approach as the ML method 
in order to estimate the ATE, but uses an OLS model fitted on pre-treatment data rather 
than XGBoost to generate the predictions for household-by-month water consumption. 
The full list of variables used in the OLS model is shown in appendix table A.2. Once 
the predictions are calculated according to this OLS model, the fixed effects prediction 
error regression (appendix equation A.1) is used to estimate the ATE . As with the ML 17

approach, and using the same procedure, the standard error is estimated via 
bootstrapping. As seen in Table 6, the non-ML approach yields an estimated ATE of 
-2.33 cubic meters.

	 I produce the single interrupted time series estimate according to the model 
described in Huitema & McKean (2000) , with the error term modeled by an AR(1) 18

 This regression is the same as Equation 1, barring exclusion of the train dummy. In the non-ML 17

approach, all pre-treatment data was used to fit the OLS model; therefore, the train dummy would be 
perfectly collinear with the post-treatment dummy.
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process  (appendix equation A.2). Unlike the ML and non-ML approaches, which 19

involve two steps—a prediction step (using either XGBoost or OLS) and an estimation 
step (using a fixed effects regression)—SITS involves only one . The SITS model 20

estimates a time trend for the entire period, an immediate effect (i.e. intercept change) 
upon treatment, and allows for a new time trend post-treatment. I include additional 
controls for household characteristics (number of people, income indicators, and 
number of devices/appliances that use water), community, interactions between 
community and interviewer teams , weather, as well as month to capture seasonality. I 21

implement SITS using the prais command in Stata, which “uses the generalized-least 
squares method to estimate the parameters in a linear regression model in which the 
errors are serially correlated […, and] are assumed to follow a first-order autoregressive 
process.” (Hardin & StataCorp, n.d.). SITS produces an estimated ATE  of 22

approximately -1.81 cubic meters.

	 All three of the single-group quasi-experimental designs are able to produce ATE 
estimates with the correct sign. The non-ML counterfactual prediction method using 
OLS produces the closest point estimate to the experimental one, with an absolute 
difference of approximately 0.2 cubic meters. SITS produces the next-closest estimate, 
and the ML counterfactual prediction method produces the furthest estimate. All three 
point estimates fall within the 95% confidence interval of the benchmark (Figure 3).


 An AR(1) process is used to model the error term as the Durbin-Watson test of the unadjusted errors 19

returns a test statistic of 0.47, indicating autocorrelation. I consider only one lag because the Durbin-
Watson test returns a statistic of approximately 2.3 for the transformed errors, failing to find evidence of 
further autocorrelation beyond one lag.

 For this reason, the SITS regression was run for all months (January 2013 through September 2016) 20

rather than the May 2014 though September 2016 period used for the fixed effects regression applied to 
the ML and non-ML methods.

 This interaction is included because each interviewer team visited a cluster of households within a 21

neighborhood; therefore, households within the same cluster that are visited by the same team may be 
similar in ways that are not fully accounted for by the available control variables. 

 Because the SITS model decomposes the treatment effect into immediate and sustained effects, the 22

reported estimate for the ATE for the 16 month post-treatment period must be calculated—in order to 
produce a comparable estimate—using both effects. Stata command lincom was used to produce a 
standard error for the treatment effect estimate, which is a linear combination of three coefficients in the 
SITS model.
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Figure 3. Benchmark vs. Single-Group Quasi-Experimental ATE Estimates  

	 Because it is difficult to compare the potential benefit gained from using ML 
over one of the aforementioned alternative approaches when the primary measure of a 
quasi-experimental design’s usefulness is its ability to replicate experimental findings 
(and therefore demonstrate equivalence using a correspondence test), correspondence 
testing was also performed for both of the alternative methods. For each design, I 
report the conclusion of the Steiner & Wong (2018) correspondence test with 

 and  as well as the minimum threshold for which equivalence 

would be concluded using the same significance level (Table 7).


δ = 0.1 SD α = 0.05
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Figure displays point estimates and 95% confidence intervals for the ATE as 
estimated by each approach. The 95% confidence for the benchmark is shaded.



Table 7. Correspondence Testing of Quasi-Experimental ATE Estimates 

	 I find that, of the three, the non-ML counterfactual prediction method using OLS 
would conclude equivalence at the smallest threshold, and, if I had selected a 

threshold of , only this approach would result in a conclusion of equivalence. 

While this was initially a surprising result considering that ML models such as XGBoost 
are often regarded to be more powerful than simple OLS due to support for 
nonlinearities between features, it underscores the lesson that more complex models 
are not best-suited for all problems. Excepting the—again arbitrary—hypothetical 

alternative threshold of , the minimum thresholds are otherwise quite similar 

across approaches.


6. Discussion 

	 My primary results do provide evidence that the ML counterfactual prediction 
method can replicate experimental treatment effects outside of the context of Prest et 
al. (2023), in which the authors had access to highly granular energy data with a large 
number of observations. Even with only monthly data and a fraction of the 
observations used in their study, I find that the ML method is able to produce a 
treatment effect in the same direction as the original experimental one, and is 
“equivalent” according to a range of commonly-used correspondence criteria. This 

0.05 SD

0.05 SD
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further supports the validity of the ML counterfactual prediction method in estimating 
causal effects when data are available only from treated units, and suggests that the 
ML counterfactual prediction method may have value in situations even when 
observations number in the tens of thousands rather than millions.

	 However, in situations where this is true, it may also be the case that a simpler 
counterfactual prediction model may provide similar results, or, as in my case, offer a 
slight improvement over the more complex one. When I apply the same prediction error 
approach, but use an OLS regression rather than XGBoost to create the predictions, I 
find that the resulting ATE estimate is 0.19 cubic meters closer to the benchmark 
estimate than the one that was calculated using the XGBoost-generated predictions. 
Correspondence testing finds that the non-ML approach using OLS would be able to 
produce a conclusion of equivalence at a similar, though slightly lower tolerance 
threshold than the ML approach. Therefore, it could be the case that a simpler model is 
more appropriate for situations with a similar number of observations, as it may be 
difficult with a dataset of this size to identify complex, nonlinear interactions between 
variables that are generalizable to a larger population or longer period. If so, an intricate 
ML model like XGBoost would not likely offer any advantage over simple OLS, and a 
researcher may benefit from selecting a non-ML counterfactual prediction method 
instead.  

	 While I find that all three of the single-group designs I tested were able to 
reproduce experimental results in this context, it is important to discuss their 
limitations. As previously noted, single-group designs are vulnerable to history, an 
event (or events) that occur(s) concurrently with treatment, but separate from 
treatment, that can affect the outcome of interest. Single-group quasi-experiments, by 
design, lack a control or comparison group that did not receive treatment but would 
still be affected by history, and are consequently unable to resolve this issue. Because I 
had access to the full RCT panel, including data from the control group, I was able to 
test for the existence of history, but a researcher interested in the practical application 
of one of these single-group designs, who has access to data from treated units only, 
would not. In such a situation, an understanding of the historical context surrounding 
the study period is critical. If the researcher believes that no history occurred, they 
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should be prepared to justify their reasoning. In the presence of history, researchers 
should be able to explain the mechanism(s) through which history may have affected 
the outcome variable, as well as the direction in which the treatment effect estimate 
would be biased as a result. 

	 For example, if there had been a drought in Costa Rica that coincided with 
installation of the water-efficient technologies, two possible mechanisms for its impact 
on water use are: 1) households may be more conscious of their water consumption 
during a drought, and hence use less water, or 2) households may need to use extra 
household water to supplement use that would typically be supplied by rainfall (e.g. 
gardening). A better cultural understanding could help one to determine which of these 
mechanisms is more likely to apply. Assuming the former, a single-group quasi-
experimental design like pretest-posttest would likely overestimate the ATE, as it would 
attribute the calculated reduction in water use following treatment only to the 
installation of the water-efficient technologies, when, in actuality, it also stemmed from 
households’ changed pattern of consumption as a result of the drought. While it is 
possible that the counterfactual prediction method, with rainfall as an input, would 
accordingly predict reduced water use post-treatment (i.e. during the drought), without 
an event of similar magnitude in the training period, it is unlikely that it would be able to 
capture the full extent to which water use should be reduced as a result of the drought.

	 Therefore, although counterfactual prediction may offer a slight improvement in 
the presence of such an event, it is still important that a researcher be able to reason 
through such a mechanism and state the expected direction of bias. Because no such 
event was present in my data, I am unable to offer any insight about how much 
improvement there may be. Future research regarding the performance of 
counterfactual prediction methods in the presence of history could provide more 
information about the cases in which they are likely to offer improvements and those in 
which they are not.  


7. Conclusion 

	 RCTs are sometimes unfeasible to implement in practice, and appropriate 
comparison groups sometimes do not exist. In such cases, researchers are left with 
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data from treated units only, and must rely on single-group quasi-experimental designs 
in order to estimate program effects. This work adds to a small body of within-study 
comparison literature evaluating said single-group designs.

	 Although my primary ML-based counterfactual prediction method is able to 
reproduce the experimental ATE estimate, I find that a non-ML, OLS-based approach 
and a single interrupted time series design are able to as well, and—in fact—that the 
non-ML approach slightly outperforms the ML approach. These results can provide 
insight to future researchers regarding implementation of the ML counterfactual 
prediction method as well as the data conditions in which one may instead choose to 
opt for a simpler design, such as the non-ML counterfactual prediction method using a 
linear regression model. While this work suggests that ML may be not be the most 
suitable choice in situations with a dataset of this size, future research into the use of 
these single-group designs in similar data contexts is needed to further validate this 
conclusion. 
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Table A.2. Variables Used in OLS Regression for Non-ML Approach 
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Equation A.2. Single Interrupted Time Series Model 

39


	1. Introduction
	2. Previous Literature
	2.1 Within-Study Comparisons
	2.2 Machine Learning
	2.3 Contributions

	3. Data
	3.1 RCT Benchmark
	3.2 ML Data

	4. Methods
	4.1 Machine Learning
	4.2 Treatment Effect Estimation
	4.3 Within-Study Comparison

	5. Results
	5.1 Fixed Effects Regression Estimates
	5.2 Correspondence Testing
	5.3 Comparison to Alternative Single-Group Designs

	6. Discussion
	7. Conclusion
	8. References
	9. Appendix

