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Abstract. In matching theory of contracts the substitutes condition plays
an essential role to ensure the existence of stable matchings. We study many-
to-many matchings where groups of individuals, of size possibly greater than
two, are matched to a set of institutions. Real-world examples include or-
phan brothers accepting an adoptive family conditional on all of them being
included; hiring contracts that may only be chosen together; or a situation
where a �rm accepts to hire several workers only if they accept to work on
di¤erent days (part-time jobs).

We demonstrate by several examples that such extra conditions may alter
the natural choice maps so that stable matchings cannot be obtained by apply-
ing the standard theorems. We overcome this di¢ culty by introducing a new
construction of choice maps. We prove that they yield stable matchings if the
construction respects an �anti-trust� rule on the supply side of the market.
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1. Introduction

Since the pioneering work of Gale and Shapley [10] on stable matchings, their
theory and algorithm has been generalized and adapted to a multitude of prob-
lems of practical interest. Following Kelso and Crawford [14] and Roth [20], many
of these results may be conveniently formulated using choice functions. Several
important examples are given in the monograph of Roth and Sotomayor [24].
Roth [20] provides a �rst analysis of group matchings, looking at the assignment

of married medical students to hospitals in the same community. In his framework,
each hospital o¤ers one position and has strict preferences over students. Each
couple has strict preferences on ordered pairs of hospitals. He shows that the set of
stable outcomes may be empty, which he found consistent with the fact that most
couples make their arrangement outside of the National Resident Matching Pro-
gram. Using the same framework, Klaus and Klijn [15] show that stable matchings
exist for a domain of �weakly responsive�preferences.1 Their result is consistent
with the idea that a su¢ cient amount of substitutability implies the existence of
desirable outcomes (see, e.g., Roth [22]; Kelso and Crawford [14]; Alkan and Gale
[1], Hat�eld and Milgrom [13]) except that in their paper, the substitutability con-
dition is imposed on the demand side of the market instead of being imposed on
the supply side of the market. From a practical point of view, although a non-
negligible proportion of the population of couples may have such preferences, the
proportion of those who do may be di¢ cult to measure: where one needs to devise
a centralized matching procedure, it is often di¢ cult to verify that agents�prefer-
ences satisfy this or that property. Moreover, this preference structure is less and
less likely to be valid as we increase the group size from two members to more
members. Echenique and Yenmez (2007) [7] propose a many-to-one matching al-
gorithm, for example of students to colleges, where the students have preferences
over the other students who would attend the same college. Although they do not
obtain a general structure on preferences that would guarantee existence of some
solution to the model, their algorithm �nds the solutions, if they exist and does
not require any assumption on preferences. Their algorithm is extended to a model
where colleges have preferences over couples, and each student has preferences over
a set of partners and colleges.
In this paper, we consider groups of individuals or �rms, of size possibly greater

than two, such that each �rm has strict preferences over workers and has a quota
on the number of workers to hire; each worker has strict preferences over �rms;
a group of workers may be hired by a group of �rms of their choice; a group of
�rms may hire a group of workers of their choice. Hence, our framework extends
the one to many matching procedure above to a possible many-to-many matching
procedure. It is adapted, but not limited, to the following examples:

(1) In a married couple the husband accepts a position in �rm F1 only if his
wife is hired by �rm F2. This example also illustrates the framework of
Roth [20] or Klaus and Klijn [15].

(2) A �rm hires several workers only if they accept to work on di¤erent days.

1A couple�s preferences are responsive if the unilateral improvement of one partner�s job is
considered bene�cial for the couple as well. If responsiveness only applies to acceptable positions,
then preferences are weakly responsive
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(3) Consider a married couple and a husband�s ex-wife. The husband accepts
a position at F1 provided that his wife is hired at �rm F2 and ex-wife is
hired at �rm F3:

Example 2 illustrates the part-time labor market. Example 3 can extend to il-
lustrate such unraveling market as the market for children adoption where brothers
and sisters may be assigned to di¤erent host families, (each with a maximum num-
ber of �potential�children) provided that families are located within a certain mile
radius.
The question addressed in this paper is whether there exists a choice map that

guaranties the existence of a stable assignment outcome. We demonstrate by sev-
eral examples that such extra conditions may alter the natural choice maps so that
stable matchings cannot be obtained by applying the standard theorems. We over-
come this di¢ culty by introducing a new construction of choice maps. Our main
result shows that there exists a stable set of contract matchings provided that �rms
give preferences to small groups rather than large groups. The intuition is that
�rms see groups of workers as more substitutes, the smaller their size. Indeed,
smaller groups represent less constraints on the �rms�preferences, hence increasing
the overall assignment satisfaction.
The structure of the paper is the following. In the next section we brie�y recall

some basic notions and results in matching theory that we need for the sequel. In
Section 3 we investigate the possible generalization of the known theorems to the
case of conditional matching problems. In Section 4 we illustrate the usefulness of
our results on a model problem.

2. General Framework

Many earlier theorems on the existence of stable matchings are special cases of
an abstract theorem of Fleiner [8], [9]. We introduce the section by some de�nitions
to be used throughout the paper. We then recall an equivalent form of Fleiner�s
theorem, given in [18], which we illustrate by some examples. Without loss of
generality, we present our framework in the context of the job market, where �rms
are indexed by F and workers are indexed by W .

De�nition 2.1. Given a nonempty set X, by a choice function on X we mean a
map C : 2X ! 2X , where 2X denotes the family of all subsets of X, satisfying the
following condition:

C(A) � A for all A � X:

Here X represents the set of all possible contracts. If a certain set A of contracts
is proposed, then the corresponding agent selects from this set a subset C(A) of
accepted contracts.

De�nition 2.2. Given two choice functions CW ; CF : 2X ! 2X on the same set
X, modeling two competing sides, a set S � X is said to be stable if there exist
two sets SW ; SF � X satisfying the following conditions:

SW [ SF = X;(2.1)

S � SW \ SF ;(2.2)

CW (A) = S for every S � A � SW ;(2.3)

CF (A) = S for every S � A � SF :(2.4)
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Intuitively, for any proposed set of contracts, the set that is accepted by work-
ers matches the set accepted by �rms. Stable contract sets represent acceptable
compromises.
This de�nition is equivalent to other usual de�nitions of stable matchings (see

[18, Proposition 3.5]). It follows at once from the de�nition that a stable set is not
blocked by any other contract, i.e., for each b 2 X we have either CW (S [fxg) = S
or CF (S [ fxg) = S (or both).
In order to ensure the existence of stable sets we need an extra property.

De�nition 2.3. A choice map C : 2X ! 2X satis�es the strengthened substitutes
condition if

A;B � X and C(A) � B =) A \ C(B) � C(A):

This condition means that if a contract is rejected from some proposed set A,
then it will also be rejected from every other proposed set B which contains the
accepted contracts.
It is shown in [18, Proposition 3.2] that a choice map satis�es the strengthened

substitutes condition if and only if it is consistent or satis�es the path independence
property :

C(A) � B � A =) C(B) = C(A);

and it satis�es the substitutes condition:

A;B � X and A � B =) A \ C(B) � C(A):

Intuitively, workers are substitutes in their talent provided that a worker rejected
from a set of potential hires is rejected regardless of the amount of other rejected
workers, as long as the accepted workers remain in the set. This de�nition corre-
sponds to the de�nition of substitutability in Roth and Sotomayor [24]; F is said to
have �substituable�preferences, if any preferred set of employees (from any subset
of X) that includes w remains its preferred set of employees from any subset of X
that still includes w. Hence, F continues to want to employ w even if some of the
other workers become unavailable.

We recall a classical construction due to Roth [23] of choice maps having this
property.

Example 2.4. Given a �nite subset Y � X, a nonnegative integer q (called quota)
and a strict preference ordering y1 � y2 � � � � on Y , we de�ne a map C(A) for any
given A � X as follows. If jA \ Y j � q, then we set C(A) := A \ Y . (Here and
in the sequel we denote by jBj the number of elements of a set B.) Otherwise let
C(A) be the set of the �rst q elements of A \ Y according to the ordering of Y .
Then C : 2X ! 2X is a choice map on X.
This choice map satis�es the strengthened substitutes condition: we prove a

more general theorem later in Theorem 3.10: see Remark 3.11 (i).

We also recall [18, Theorem 3.6]:

Theorem 2.5. If the choice maps CW ; CF : 2X ! 2X satisfy the strengthened
substitutes condition, then there exists at least one stable set of contracts.

Examples 2.6. We give two examples demonstrating the necessity of the strength-
ened substitutes condition.
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Consider a two-point set X = fa; bg and the three choice maps de�ned by the
following formulae:

A ? fag fbg fa; bg
C1(A) ? fag fbg fag
C2(A) ? ? fbg ?
C3(A) ? ? ? fa; bg
One may readily verify that

� C1 satis�es the strengthened substitutes condition,
� C2 satis�es the substitutes condition but is not path-independent,
� C3 is path-independent but does not satisfy the substitutes condition.

(a) If CW = C1 and CF = C2, then there is no stable set. Indeed, we have
CW (S) = S = CF (S) only if S = ? or S = fbg. However, S = ? is blocked
by fbg because

CW (S [ fbg) = CF (S [ fbg) = fbg 6= S;

and S = fbg is blocked by fag because

CW (S [ fag) = fag 6= S and CF (S [ fag) = ? 6= S:

Hence none of these sets is stable.
(b) If CW = C1 and CF = C3, then there is no stable matching either. Indeed,

we have CW (S) = S = CF (S) only if S = ?. For S = ? the condition
(2.3) is satis�ed only if SW = ?, and then SF = X by (2.1). However, then
CF (SF ) = X 6= S, so that (2.4) fails.

Remark 2.7. AygÃ 1
4n and SÃ{nmez [2],[3] have recently shown that �irrelevance

of rejected contracts�, the condition that

z =2 C(Y [ fzg) =) C(Y ) = C(Y [ fzg);

is essential for many �matching with contracts� models. Let us show that this
condition follows from the strengthened substitutes condition. The case z 2 Y
being obvious, we may assume that z =2 Y .
Assuming thus that z =2 C(Y [ fzg) and z =2 Y , we prove the two inclusions

C(Y ) � C(Y [ fzg) and C(Y [ fzg) � C(Y ) by two di¤erent applications of the
strengthened substitutes condition.
First we have

z =2 C(Y [ fzg) =) C(Y [ fzg) � Y
=) (Y [ fzg) \ C(Y ) � C(Y [ fzg)
=) C(Y ) � C(Y [ fzg);

the �rst implication follows from the choice map property C(Y [ fzg) � Y [ fzg
and from the assumption z =2 C(Y [ fzg), the second one is the application of the
strengthened substitutes condition with

A = Y [ fzg and B = Y;

while the third one follows again from the choice map property: since C(Y ) � Y ,
we have (Y [ fzg) \ C(Y ) = C(Y ).
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On the other hand, we also have the converse inclusion:

C(Y ) � Y [ fzg =) Y \ C(Y [ fzg) � C(Y )
=) C(Y [ fzg) � C(Y );

here the �rst implication follows by applying the strengthened substitutes condition
with

A = Y and B = Y [ fzg ;
while the second one follows because Y \ C(Y [ fzg) = C(Y [ fzg) by the choice
map property C(Y [ fzg) � Y [ fzg and by our assumption z =2 C(Y [ fzg).

Example 2.8. We recall the solution of the classical problem of worker��rm match-
ing. Let W = fw1; w2; : : :g be a set of workers and F = ff1; f2; : : :g a set of �rms.
Each worker wi has a list of �rms (a subset of F ) he/she would like to be hired
by, with a strict preference ordering. Similarly, each �rm has a list of workers (a
subset of W ) it would like to hire, with a strict preference ordering. Furthermore,
a worker wi may be hired by at most qwi �rms (we allow several part time jobs),
and each �rm fj has a quota qfj of maximum number of workers it can hire. By a
contract we mean a worker��rm pair (wi; fj).

Now we de�ne two choice maps CW ; CF on X :=W�F as follows. Applying the
preceding example, for each worker wi we construct a choice map Cwi in fwig�F ,
using the worker�s preference ordering and the quota qwi , and for each �rm fj we
construct a choice map Cfj in W � ffjg, using the �rm�s preference ordering and
the quota qfj . Finally, for any set A � X := W � F we de�ne CW (A) and CF (A)
by the formulas

CW (A) := [wiCwi(A \ fwig � F )
and

CF (A) := [fjCfj (A \W � ffjg):
All choice maps Cwi and Cfj satisfy the strengthened substitutes condition by

Example 2.4. It follows easily (see [18, Proposition 3.12]) that both CW and CF
are choice maps in X = W � F satisfying the strengthened substitutes condition.
We may thus apply the above theorem to obtain a stable set.

3. Conditional matchings

As before, we denote by X the set of all possible contracts. By a bloc we simply
mean a subset of X.

De�nition 3.1. Given a family fXjg of blocs, a choice map C : 2X ! 2X is called
admissible if for each A � X and for each bloc Xj we have either Xj � C(A) or
Xj \ C(A) = ?.

Lemma 3.2.
(i) An admissible choice map remains admissible if we add one-point sets as

blocks.
(ii) An admissible choice map remains admissible if we replace any two inter-

secting blocs by their union.

Proof. Let C be an admissible choice map in X with blocks Xj .
(i) For any given A � X and x 2 X we have either x 2 C(A) or x =2 C(A),

which may also be written in the form fxg � C(A) or fxg \ C(A) = ?.



CONDITIONAL STABLE MATCHINGS 7

(ii) If two blocks Xj ; Xk have a common element x, then for each A � X we
have either Xj [ Xk � C(A) or (Xj [ Xk) \ C(A) = ?. Indeed, in case
x 2 C(A) we have Xj � C(A) and Xk � C(A), while in case x =2 C(A) we
have Xj \ C(A) = ? and Xk \ C(A) = ? by de�nition of admissibility.

�
Assumption 3.3. In view of the preceding lemma we assume henceforth that the
blocs Xj form a partition of X, i.e., they are disjoint and their union is X.

Under this assumption a choice function is admissible if and only if C(A) is a
union of blocs for each A � X.
In order to apply Theorem 2.5 for problems with blocs, we need to construct

suitable admissible choice maps, satisfying the strengthened substitutes condition.
Given a choice map, the most natural way to construct an admissible choice map

is the following: we accept the contracts of a bloc if and only if each contract of
the bloc would individually be accepted in the absence of the bloc. This leads to
the following

De�nition 3.4. Given a choice map C : 2X ! 2X , we de�ne an induced map
C : 2X ! 2X by setting

C(A) := [fXj : Xj � C(A)g
for all A � X.

Proposition 3.5. C is an admissible choice map.

Proof. Since C(A) � C(A) � A for all A, C is a choice map. The admissibility
follows by observing that each image C(A) is a union of blocks by de�nition. �
Remarks 3.6.

(i) If all blocs are one-point sets, then C = C.
(ii) For any A � X we have C(A) = C(A) where A denotes the union of

the blocs Xj � A. Hence we could simplify our map C, without loss of
information, by considering its restriction to the family of unions of blocs.

Unfortunately, the strengthened substitutes condition of a choice map may be
lost when we use an induced choice map. We illustrate this by an example.

Example 3.7. We consider the worker��rm model with one �rm and four workers,
so that

X = f(w1; f1); (w2; f1); (w3; f1); (w4; f1)g :
For simplicity of notations we write wi instead of (wi; f1), so that

X = fw1; w2; w3; w4g :
We assume that the �rm may hire up to two workers and its preference ordering

is w1 � w2 � w3 � w4. This gives rise to a choice map C := CF = Cf1 : 2X ! 2X ,
satisfying the strengthened substitutes condition, obtained by the construction of
Example 2.4 with the quota q = 2. We observe that

C(X) = fw1; w2g and C(fw1; w3g) = fw1; w3g :
Next we consider the induced admissible choice map C : 2X ! 2X corresponding

to the two blocs X1 = fw1; w3g and X2 = fw2; w4g. Consider the sets A := X
and B := fw1; w3g. Then C(A) = ? because C(A) = fw1; w2g contains none of
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the blocs fw1; w3g and fw2; w4g, and C(B) = C(B) = fw1; w3g because C(B) =
fw1; w3g is a bloc.
Since

C(A) = ? and A \ C(B) = fw1; w3g 6= ?;
we have

C(A) � B but A \ C(B) 6� C(A);
so that the induced admissible choice map does not satisfy the strengthened sub-
stitutes condition.

In view of this counterexample we choose another way to construct suitable
choice maps by generalizing the construction of Example 2.4.

De�nition 3.8. Let the blocs X1; : : : ; Xn form a partition of X with the strict
preference ordering X1 � X2 � � � � � Xn, and �x a quota q � 0. For any given set
A � X, we de�ne recursively the sets C0(A); C1(A); : : : ; Cn(A) as follows.
First we set C0(A) := ?. Then, if Cj(A) has already been de�ned for some

0 � j < n, then we set

(3.1) Cj+1(A) :=

(
Cj(A) [Xj+1 if Xj+1 � A and jCj(A) [Xj+1j � q,
Cj(A) otherwise.

Finally, we de�ne C(A) := Cn(A). Observe that C : 2X ! 2X is an admissible
choice map by construction, and jC(A)j � q for all A � X.

Unfortunately, this construction still does not always give choice maps satisfying
the strengthened substitutes condition:

Example 3.9. As in Example 3.7, we consider again the worker��rm model with
one �rm and four workers, so that

X = fw1; w2; w3; w4g ;
and the �rm may hire up to two workers. Now we assume that w2 and w3 form
a bloc. Then the former ordering w1 � w2 � w3 � w4 gives rise naturally to
the new ordering fw1g � fw2; w3g � fw4g between the blocs. Applying the above
construction with q = 2 we obtain an admissible choice map satisfying the equalities

C(fw2; w3; w4g) = fw2; w3g and C(fw1; w2; w3; w4g) = fw1; w4g :
Hence for A = fw2; w3; w4g and B = X we have

C(A) � B but A \ C(B) = fw4g 6� fw2; w3g = C(A):

There is, however, a practical su¢ cient condition ensuring the strengthened sub-
stitutes property:

Theorem 3.10. Let the choice map be constructed as in (3.1). If the numbers of
elements of Xj form a non-decreasing sequence, i.e.,

(3.2) jX1j � jX2j � � � � � jXnj ;
then the choice map C : 2X ! 2X satis�es the strengthened substitutes condition.

Remarks 3.11.

(i) If X1; : : : ; Xn are all one-point sets, then condition (3.2) is obviously satis-
�ed and our construction reduces to Example 2.4.
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(ii) Condition (3.2) expresses a reasonable compromise in treating blocs: in
order to ensure the existence of stable contract sets, priority is given to
smaller blocs. This is also a kind of anti-trust rule. The intuition is that
�rms see groups of workers as more substitutes, the smaller their size. In-
deed, smaller groups represent less constraints on the �rms�preferences,
hence increasing the overall assignment satisfaction.

Proof. Let A;B � X be two sets satisfying C(A) � B; we have to show that
A \ C(B) � C(A). Since both C(A) and C(B) are unions of some sets Xj by
construction, this amounts to show that if Xk � A \ C(B) for some 1 � k � n,
then Xk � C(A).
We use the notations of the second construction of C given above.
If 1 � j < k, then using (3.2) and the assumption Xk � C(B) we get

jCj�1(B)j+ jXj j � jCk�1(B)j+ jXkj = jCk(B)j � q:

If Xj � B, then we conclude that Xj � C(B) by de�nition of Cj(B). In particular,
using our assumption C(A) � B we obtain that

(3.3) Ck�1(A) � Ck�1(B):

Since Xk � A \ C(B) by assumption, we have Xk � A, and

jCk�1(B)j+ jXkj � q

by de�nition of Ck(B). Using (3.3) it follows that

jCk�1(A)j+ jXkj � q:

Since Xk � A, by de�nition of Ck(A) we conclude that Xk � Ck(A). �

Example 3.12. We return to the problem of blocs discussed in Example 3.7. We have
X = fw1; w2; w3; w4g, q = 2 and the blocs X1 := fw1; w3g and X2 := fw2; w4g. In
view of the ordering w1 � w2 � w3 � w4 it is natural to order the two blocs by
the relation fw1; w3g � fw2; w4g. This yields the choice map given by the formulas
(see Remark 3.6 (ii))

C(?) = ?; C(fw1; w3g) = fw1; w3g ; C(fw2; w4g) = fw2; w4g

and

C(fw1; w2; w3; w4g) = fw1; w3g :

One may readily check that this choice map satis�es the strengthened substitutes
condition. This also follows from Theorem 3.10 because condition (3.2) is obviously
ful�lled here: the blocs have the same number of elements.
It is instructive to compare this choice map with the induced choice map in

Example 3.7, which did not satisfy the strengthened substitutes condition:

C(?) = ?; C(fw1; w3g) = fw1; w3g ; C(fw2; w4g) = fw2; w4g

and

C(fw1; w2; w3; w4g) = ?:
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4. An adoption problem

We illustrate the usefulness of Theorem 3.10 by some model problems.

Problem 1. Consider the assignment of �ve children c1; c2; c3; c4; c5 to �ve po-
tential families f1; f2; f3; f4; f5. Families f1 and f4 have the potential to adopt two
children, families f2; f3 and f5 can adopt only one.
The family preferences are as follows:

� Preference order of f1 : c1 � c2 � c3 � c4 � c5
� Preference order of f2 : c3 � c5 � c2 � c1 � c4
� Preference order of f3 : c4 � c2 � c1 � c5 � c3
� Preference order of f4 : c4 � c2 � c5 � c1 � c3
� Preference order of f5 : c3 � c4 � c5 � c1 � c2

Through their agencies, the ranking of children has been reported as follows:

� Preference order of c1 : f1 � f2 � f3 � f4 � f5
� Preference order of c2 : f5 � f1 � f2 � f3 � f4
� Preference order of c3 : f5 � f4 � f3 � f2 � f1
� Preference order of c4 : f1 � f5 � f3 � f4 � f2
� Preference order of c5 : f1 � f5 � f4 � f3 � f2

For the solution we set

C := fc1; c2; c3; c4; c5g ; F := ff1; f2; f3; f4; f5g

and we proceed in several steps.

Step 1. For each �xed child ci we apply Example 2.4 to de�ne a choice map Cci
on fcig�F with Y given below. For brevity we write (i; j) instead of (ci; fj) in the
preference relations.

� For child c1 we choose q = 1,

Y := fc1g � ff1; f2; f3; f4; f5g ;

(1; 1) � (1; 2) � (1; 3) � (1; 4) � (1; 5):
� For child c2 we choose q = 1,

Y := fc2g � ff1; f2; f3; f4; f5g ;

(2; 5) � (2; 1) � (2; 2) � (2; 3) � (2; 4):
� For child c3 we choose q = 1,

Y := fc3g � ff1; f2; f3; f4; f5g ;

(3; 5) � (3; 4) � (3; 3) � (3; 2) � (3; 1):
� For child c4 we choose q = 1,

Y := fc4g � ff1; f2; f3; f4; f5g ;

(4; 1) � (4; 5) � (4; 3) � (4; 4) � (4; 2):
� For child c5 we choose q = 1,

Y := fc5g � ff1; f2; f3; f4; f5g ;

(5; 1) � (5; 5) � (5; 4) � (5; 3) � (5; 2):



CONDITIONAL STABLE MATCHINGS 11

Step 2. As in Example 2.8, we combine the three choice maps of the preceding
step into a global choice map CW on W � F by setting

CW (A) :=
5[
i=1

Cci (A \ (fcig � F ))

for every A � C � F .
Step 3. For each family fj we apply Example 2.4 to de�ne a choice map Cfj on

C � ffjg with Y given below and still writing (i; j) instead of (ci; fj) for brevity.
� For family f1 we choose q = 2,

Y := fc1; c2; c3; c4; c5g � ff1g ;
(1; 1) � (2; 1) � (3; 1) � (4; 1) � (5; 1):

� For family f2 we choose q = 1,
Y := fc1; c2; c3; c4; c5g � ff2g ;

(3; 2) � (5; 2) � (2; 2) � (1; 2) � (4; 2):
� For family f3 we choose q = 1,

Y := fc1; c2; c3; c4; c5g � ff3g ;
(4; 3) � (2; 3) � (1; 3) � (5; 3) � (3; 3):

� For family f4 we choose q = 2,
Y := fc1; c2; c3; c4; c5g � ff4g ;

(4; 4) � (2; 4) � (5; 4) � (1; 4) � (3; 4):
� For family f5 we choose q = 1,

Y := fc1; c2; c3; c4; c5g � ff5g ;
(3; 5) � (4; 5) � (5; 5) � (1; 5) � (2; 5):

Step 4. As in Example 2.8, we combine the three choice maps of the preceding
step into a global choice map CF on W � F by setting

CF (A) :=
5[
j=1

Cfj (A \ (C � ffjg)) ; A � C � F:

Step 5. The choice maps CW and CF satisfy the hypotheses of Theorem 2.5.
Applying the algorithms described in [18, Remark 3.7] we obtain after some com-
putation that the children-optimal and the family-optimal equilibria are the same:

� children c1 and c2 are adopted by family f1;
� child c3 is adopted by family f5;
� child c4 is adopted by family f3;
� child c5 is adopted by family f4.

moveComputation of the children-optimal equilibrium. Starting with X0 := X
we compute Y1; X2; Y3; X4::: by the formulae

Yn+1 := (X nXn) [ CW (Xn) and Xn+1 := (X n Yn) [ CF (Yn):

The results are summarized in the following table:
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ci fj X0 Y1 X2 Y3 X4 Y5 X6 Y7 X8 S

1 1 x x x x x x x x x x
1 2 x x x x x
1 3 x x x x x
1 4 x x x x x
1 5 x x x x x
2 1 x x x x x x x x x
2 2 x x x x x
2 3 x x x x x
2 4 x x x x x
2 5 x x x x x
3 1 x x x x x
3 2 x x x x x
3 3 x x x x x
3 4 x x x x x
3 5 x x x x x x x x x x
4 1 x x x x x x
4 2 x x x x x
4 3 x x x x x x x
4 4 x x x x x
4 5 x x x x x
5 1 x x x x x
5 2 x x x x x
5 3 x x x x x
5 4 x x x x x x x x
5 5 x x x x x

For example, the table shows that

Y1 = f(1; 1); (2; 5); (3; 5); (4; 1); (5; 1)g ;

the interpretation of the other columns here and in the subsequent tables is similar.

The children-optimal equilibrium is thus the following:

� children c1 and c2 are adopted by family f1;
� child c3 is adopted by family f5;
� child c4 is adopted by family f3;
� child c5 is adopted by family f4.

Next we compute the family-optimal solution:
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Ci fj Y0 X1 Y2 X3 Y4 X5 Y6 X7 Y8 X9 Y10 X11 Y12 S

1 1 x x x x x x x x x x x x x x
1 2 x x x x x x x
1 3 x x x x x x x
1 4 x x x x x x x
1 5 x x x x x x x
2 1 x x x x x x x x x x x x x x
2 2 x x x x x x x
2 3 x x x x x x x
2 4 x x x x x x x
2 5 x x x x x x x
3 1 x x x x x x x
3 2 x x x x x x x
3 3 x x x x x x x
3 4 x x x x x x x
3 5 x x x x x x x x x x x x x x
4 1 x x x x x x x
4 2 x x x x x x x
4 3 x x x x x x x x x x x x x x
4 4 x x x x x x x
4 5 x x x x x x x
5 1 x x x x x x x
5 2 x x x x x x x
5 3 x x x x x x x
5 4 x x x x x x x x x x x x x
5 5 x x x x x x x

The family-optimal equilibrium is thus the same as above.

Problem 2. We reconsider the previous problem by adding some conditions. We
assume that c1; c2; c3 are brothers and sisters, while c4 and c5 are twins. Children
are concerned about separation but agencies have some information about families
location and try to allocate children according to their wish to the best of their
ability.
We add the following condition: the twins c4 and c5 have to be adopted together.

This implies that they may be adopted only by families f1 or f4.
We modify the preference relations of the previous subsection as follows: we

remove children c4 and c5 from the preference orders of families f2, f3, f5, and
we replace the preference orders c4 and c5 by the preference order f1 � f4 for the
couple fc4; c5g. Thus now we have the following relations:

� Preference order of f1 : c1 � c2 � c3 � c4 � c5
� Preference order of f2 : c3 � c2 � c1
� Preference order of f3 : c2 � c1 � c3
� Preference order of f4 : c4 � c2 � c5 � c1 � c3
� Preference order of f5 : c3 � c1 � c2
� Preference order of c1 : f1 � f2 � f3 � f4 � f5
� Preference order of c2 : f5 � f1 � f2 � f3 � f4
� Preference order of c3 : f5 � f4 � f3 � f2 � f1
� Preference order of fc4; c5g : f1 � f4
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While the �rst problem could be solved by the usual algorithm as in [18], for
the solution of Problem 2 we also need Theorem 3.10 above. Using the modi�ed
preference relations, keeping the same quotas as in Problem 1, and taking quota
q = 1 for fc4; c5g, we construct the corresponding choice maps as before. Thanks
to Theorem 3.10 we may apply the usual algorithms. It turns out that the children-
optimal and the family-optimal equilibria coincide again, but they are di¤erent from
that of Problem 1:

� children c1 and c2 are adopted by family f1;
� child c3 is adopted by family f5;
� children c4 and c5 are adopted by family f4.

Problem 3. We consider Problem 2 with a less restrictive condition: families f1
or f4 may only adopt twins c4 and c5 together. This does not rule out the possibility
that the twins are adopted separately by the other three families f2, f3 or f5.
With respect to Problem 1 we modify the preference orderings of f1 and f4 as

follows:

� Preference order of f1 : c1 � c2 � c3 � fc4; c5g
� Preference order of f4 : c2 � c1 � c3 � fc4; c5g

In order to apply Theorem 3.10 we have to give the couple f4; 5g the least
preference: otherwise condition (3.2) would not be satis�ed.
Using the modi�ed preference relations and keeping the same quotas, our algo-

rithms show that the children-optimal and the family-optimal equilibria coincide
again:

� children c1 and c2 are adopted by family f1;
� child c3 is adopted by family f5;
� child c4 is adopted by family f3;
� child c5 is adopted by family f2.

The solution is thus di¤erent from the solutions of preceding two problems.

We summarize our results in the following table:

Child Problem 1 Problem 2 Problem 3

c1 f1 f1 f1
c2 f1 f1 f1
c3 f5 f5 f5
c4 f3 f4 f3
c5 f4 f4 f2

As we have already observed, the children-optimal and the family-optimal solu-
tions will coincide in all three problems. Furthermore, children c1, c2 and c3 get
the same adoptive parents in all cases. On the other hand, the results for children
c4 and c5 are di¤erent in each case.
move

5. Extension: Schedule matchings

We conclude our paper by considering the more complex problem of schedule
matchings. We illustrate the problem by an example.
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Example 5.1. We return to the worker-�rm model. We assume that the hiring is
made for each day dk of a set D of days, e.g., of a week or a month. The contracts
are the elements of the set X :=W �F �D. Each worker wi has a set of contracts
belonging to fwig � F � D with a quota qwi of maximum number of contracts
and a strict preference ordering on the subset. Similarly, each �rm fj has a set
of contracts belonging to W � ffjg �D with a quota qfj of maximum number of
contracts and a strict preference ordering on the subset. Finally, we may have a
global quota q of the maximum number of all accepted contracts.

For problems of this type a general and e¢ cient algorithm has been developed
in [18]. The question is whether this algorithm can be extended in order to handle
blocs, too.
The mathematical framework is the following. As before, let fX1; : : : ; Xng be a

�nite family of disjoint subsets of X, X1 � X2 � � � � � Xn a complete ordering of
its elements, and q a nonnegative integer (quota).
The novelty is that we also have another �nite family fY1; : : : ; Ymg of disjoint

subsets ofX, and corresponding nonnegative integers q1; : : : ; qm (local quotas). (For
instance, in the case of Example 5.1 Yk may be the set of contracts on day dk.)
For any given set A � X, we de�ne recursively the sets C0(A); C1(A); : : : ; Cn(A)

as follows.
First we set C0(A) := ?. Then, if Ci(A) has already been de�ned for some

0 � i < n, then we set

Ci+1(A) :=

8><>:
Ci(A) [Xi+1 if Xi+1 � A, jCi(A) [Xi+1j � q

and j(Ci(A) [Xi+1) \ Yj j � qj for all j,
Ci(A) otherwise.

Finally, we de�ne C(A) := Cn(A). We observe that C(A) � A for all A, so that
C : 2X ! 2X is a choice map. We observe also that jC(A)j � q and jC(A) \ Yj j � qj
for all j.
One may wonder whether condition (3.2) of Theorem 3.10 ensures the strength-

ened substitutes property of this more general choice map, too. A moment of
re�ection shows that we should also assume that none of the blocs is splitted by
the sets Yj , i.e.,

either Xi \ Yj = ? or Xi � Yj
for all i; j. However, the following example shows that these two conditions are still
not su¢ cient.

Example 5.2. We set X = X1 [X2 [X3 = Y1 [ Y2 with

X = fa; b; c; d; e; fg ;
X1 = fag ; X2 = fb; cg ; X3 = fd; e; fg ;
Y1 = X1 [X2 = fa; b; cg ; Y2 = X3 = fd; e; fg ;

the preference ordering X1 � X2 � X3 and quotas q1 = 2, q2 = 3, q = 4.
Then for the sets A := fb; c; d; e; fg and B := X = fa; b; c; d; e; fg we have

C(A) = fb; cg and C(B) = fa; d; e; fg. In particular,

C(A) � B but A \ C(B) = fd; e; fg 6� fb; cg = C(A);

so that the strengthened substitutes condition is not satis�ed.
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The generalization of Theorem 3.10 to schedule matchings seems to be a chal-
lenging open problem.
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