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a tax on insurance payment in presence of moral hazard using a Gamma conditional distribution

of losses. Our results show that any tax paid by the insured would the lower his effort to prevent

loss, hence increasing insurance payments and decreasing pro�ts. This result is reinforced as the

insured becomes more risk averse unless the distribution of losses is uniform. We �nd that any

decrease in the insurer's tax share would generate an overall decrease in welfare unless the insured

characteristics prevent him from reacting to the policy.
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1. INTRODUCTION

During the past few years, much attention has been placed on possible revenue sources to pay

for health care. The recent political interest has been to tax insurance companies: the Baucus plan

levies a non-deductible excise tax of 40% on insurance companies. In many insurance markets, the

insurance provider determines the premium based on a coverage amount chosen by the insured. As

a result, a tax on the premium amount corresponds to a proportional tax on the coverage amount.

For example, in the long term care insurance market, the future insured is prompted to choose a

monthly bene�t during the contract negociation. In this paper, we analyze the economic impacts of

imposing a tax on payments out to the insured. The question then is: should the insurance provider

pay the full amount of the tax as is proposed or should the insured bear a portion of it? And in

case the insured bears a portion of it, should this portion be attributed uniformly across contract

types? To answer these questions, we generalize the analysis to a case where the tax could be

shared between the insurer and the insured.

Unfortunately, the presence of asymmetric information in insurance markets complicates the

analysis (Chiappori and Salanie, 1997, 2000; Dionne et al., 2000, 2012; Villeneuve, 2000; Ab-

bring et al., 2003 to name a few). The lack of care enforcement on the part of the insurer, i.e.

moral hazard, complicates the welfare outcome of any policy aiming at redistributing health care

coverage (see for example Dionne et al., 1997; Doherty and Smetters, 2005, for empirical evidence

of moral hazard in insurance markets, and Ketsche, 2004 for an empirical analysis of the impact

of a subsidy on welfare). Indeed, the more health insurance an individual acquires, the lower his

risk. This improves the social welfare of those with the greater coverage. But as his coverage

increases the insured subsequently invests less in self-protection and consequently increases his

use of health care services. This increased demand causes increased use of services that results in

higher prices, thus having the opposing effect on social welfare. Because risk-averse consumers

would not purchase this additional care if they had to pay the full cost, the value of the extra-service

to consumers falls short of the social cost of producing that care. Therefore, although risk sharing

increases social well-being, the change in moral hazard induces welfare loss.
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Early theoretical studies on moral hazard in insurance markets (Arrow, 1963; Pauly, 1968;

Shavell, 1979) proposed solutions to the moral hazard issue. The solutions included (i) an incom-

plete coverage against loss, which gives the individual an incentive to prevent loss by exposing him

to some �nancial risk (see Wang et al, 2008 and Chiappori et al, 1997; Koc, 2011 for empirical ev-

idence of this solution in the market for automobile insurance and for physician services insurance

respectively) and (ii) the observation of care, to link it to the premium or coverage in the event of

a claim. The impossibility to fully observe care, however, has led to an increasing literature on

the design of optimal contracts (Lewis and Sappington, 1995; Winter, 1992, 2000; Gollier, 2000;

Doherty and Smetters, 2005).

In this paper we use a framework allowing for a distribution of losses with care reducing both

the probability of a loss and the size of a loss (MasColell, Whinsten and Green, 1995) .1 In our

model, an Agent insures with a Principal. Both have property rights to an uncertain income stream

that represents a possible loss from current wealth. The random income stream depends on care or

effort on the part of the Agent, to be taken in the future. The Principal establishes a sharing rule on

how to share the random income stream. The Principal-Agent relationship involves moral hazard,

because the Agent's effort to avoid any loss is unobservable by the Principal, while it ultimately

affects the expected pro�t. Therefore the Principal wants to use the contract to induce the Agent to

exert optimal effort to invest in self-protection and/or loss reduction.

It is well known, however, that the Principal-Agent problem (Laffont and Martimort, 2002) is

dif�cult to solve when effort is a continuous variable. Its tractability depends on the ability to

simplify an in�nite number of global incentive constraints corresponding to an in�nite number

of possible effort levels and replace them by a local incentive constraint to induce the maximum

effort from the agent. This last condition states that the agent is indifferent between choosing a

1Economic models of moral hazard in insurance markets differ on their assumptions about the impact of greater care
on the distribution of losses faced by the insured (Winter, 2000). When the loss is assumed to be random, the literature
distinguishes the effects of moral hazard on two types of expenditures on the part of the insured (Ehrlich and Becker,
1972). The �rst type of expenditures, called self-protection, reduces the probability of an accident. It refers to an
increase in the probability of a zero loss, with no change in the conditional distribution. The second type, called loss
reduction, refers to a �rst-order stochastic reduction with no change in the probability of a loss. In these two cases,
the optimal insurance contract is characterized by a premium and a coverage amount that may depend on the loss
amount.We use a third approach allowing for an arbitrary distribution of losses with care reducing both the probability
of a loss and the size of a loss
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given level of effort and increasing it by a slight amount when he receives the risk premium. This

so-called `�rst order approach' has been one of the most debated issues in contract theory. Mir-

rlees (1975) has shown that the problem may sometimes have no optimal solution in the class of

unbounded sharing rules. Rogerson (1985) shows that the `original' �rst-order approach (with an

in�nite number of global incentive constraints) gives the same solutions as the �rst order approach

when the following two properties are satis�ed. The �rst, the Maximum Likelihood Ratio Property

(MLRP), ensures that the Agent is rewarded in the state of nature that is most informative in that

he has exerted positive effort. The second property is the Convexity of the Distribution Function

Condition (CDFC) which ensures that higher pro�t (of the Principal) is a signal of higher effort on

the part of the Agent. The problem is that the CDFC property is very restrictive and tremendously

limits the list of possible distributions that can be used. Simple distributions, such as the exponen-

tial distribution function, do not verify the latter property. Jewitt (1988), however, has shown that

the CDFC can be relaxed, provided that the Agent's utility function satis�es certain properties.

We show that the Gamma conditional distribution of loss veri�es the �rst-order validation con-

ditions of Jewitt (1988). We characterize the optimal insurance contract in presence of taxation

using this distribution as well as a representation of the Agent's preferences also satisfying Jewitt's

conditions. We then analyze how the tax affects equilibrium outcomes. More speci�cally, we

analyze how increasing the Agent's share of the tax impacts his investment in self-protection/loss

reduction, the Principal's average payouts, the Principal's pro�t and the overall social welfare. We

simulate the above effects for different measures of risk aversion of the Agent and for different

characteristics of his preferences and his likelihood to contract with alternative providers. We

present the characteristics of the optimal contract and the impact of an increase in the insured tax

share in case of a simple utility function. The closed form solutions to the problem emphasize the

good properties of the Gamma distribution. Still, we check the robustness of our results by using

alternative loss distributions: one proposed by Rogerson (1985) and one proposed by LiCalzi and

Spaeter (2003). To the best of our knowledge, this is the most general, yet most detailed analysis

of the impact on welfare of imposing a tax on insurance output.
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Our results show that maximum effort of the insured is achieved when the insurer pays the

full amount of the tax. An exception to the result occurs when losses happen to be uniformly

distributed. In this case, the insured may increase his effort because he is unable to anticipate

the size of his future losses and of his insurance tax amount. If the tax share paid by the insured

were to increase, we �nd average insurance payments out to the insured would be higher, unless

the provider recognizes the insured has made only marginal effort to self-protect and the insured

is uncertain about keeping insurance with them. This suggests that the insurance provider would

compensate other taxed insured through a higher coverage in order to keep their contract. Finally,

the above increase in average payments would generate a decline in the provider's pro�t that is

positively correlated to the insured tax share.

Under the assumption that losses are Gamma distributed, we �nd any increase in the tax share of

an insured with low self-protection investment generates an overall decrease in welfare. Welfare is

found to increase only for young and healthy individuals with constant marginal cost of effort and

with a large number of other insurance contracts opportunities. When investment in self-protection

is high, the effect on welfare is ambiguous. It is negative for insured whose marginal cost of effort

is constant. It is positive however, when the cost of effort is high and convex. Furthermore, this

positive effect is independent of the assumed distribution of losses. This result may be explained by

a greater rise in the insured satisfaction when reducing his very costly effort. Finally, we �nd that

more risk aversion, i.e. higher co-pay reinforces the insured's incentive to substitute care services

for self protection. This last conclusion is reversed however, when uncertainty about future losses

is higher.

The next section describes the model. In Section 3, we use a more general representation of

the insured preferences to characterize the contract in presence of taxation and presents simulation

results. Section 4 concludes.

2. THE FRAMEWORK

The literature distinguishes three types of insurance models under the assumption of moral haz-

ard. The �rst model analyzes the moral hazard on expenditures for self-protection. Self-protection



6 CHRISTELLE VIAUROUX

is de�ned as an increase in the probability of a zero loss with no change in the conditional distrib-

ution of losses. In this model, a general insurance contract consists of a premium � and a payment

function I(x) where x is the loss. The probability of an accident depends on the care a undertaken

by the individual on avoiding the loss. The insured loses x and receives I(x). The decision vari-

ables are �; I(x); and a: The second model analyzes the moral hazard on expenditures to reduce

the size of a contingent loss (with no change in the probability of an accident). Conditional upon an

accident, there are a �nite number of loss sizes occuring with different probabilities. In this case,

an insurance contract consists of a premium � and a �nite number of possible payments contingent

upon the loss size. The decision variables are �; I1; :::; In (where n is the total number of possible

losses) and a: In this second model, the size of the loss depends on the care a undertaken by the

individual on avoiding the loss.

In this paper, we use a more general framework similar to Holmström (1979). Unlike the models

above, our framework allows for a distribution of losses with care affecting both the probability

of a loss and the size of a loss (see also Winter, 2000). A risk averse Agent (the insured) whose

demand for health care services is continuous, insures with a risk neutral Principal (the insurer

or insurance provider). The insurance provider and the insured both have property rights to an

uncertain income stream, i.e a possible loss from current wealth which depends on the care or

effort on the part of the agent, to be taken in the future.

The insured, with initial wealth Y faces the risk of losing the amount of wealth x. The probabil-

ity of a loss is represented by a density function f (xja); it is a function of the loss x for a given care

a undertaken by the insured on avoiding the loss. The respective cumulative distribution function

is given by F (xja) where F (xja) is absolutely continuous with respect to the same nonnegative

measure for each a:This assumption can be illustrated by long term care insurance for example,

where the probability of a loss is a direct function of the effort of the insured. In this case, a loss is

declared "certi�ed" if the insured becomes unable to perform at least two activities of daily living

for an expected period of 90 days without substantial assistance from another person (i.e. eating,

bathing...).
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The insurer establishes a sharing rule, or contract, on how to share the random income stream.

The contract describes the insurance payment to the agent I(x) as a function of the loss incurred by

the agent. The strategic variables here are I(x) and a: The insurer collects an insurance premium

from the insured in an amount �: This amount is assumed to be roughly equivalent to the average

claim (Friedman, 1974), we set � =
R1
x0
xf(xja; x0)dx for x 2 [x0;1) : The insured, chooses an

insurance plan giving him a transfer payment I(x) in case of loss and a lifestyle with investment in

self-protection a; of associated cost function c(a); and has a separable von Neumann-Morgenstern

event-independent utility function UA(I; �; a) = u(I(x); �)� c(a) where � is a numeraire good, u

is increasing concave and c is increasing convex (see Arnott, 1992 for further discussion and some

examples). If the insured does not accept the proposed contract, he can still �nd an outside contract

leaving him utility U; so a constraint on the insurer's choice of I is that the agent's maximized

expected utility must not be less than U:

Each transfer payment to the insured I(x) is subject to a tax rate t. The tax is shared by both

parties: we denote by 
 the share of the tax paid by the insured, and (1� 
) the share paid by the

insurer. Hence, 
 = 0 when the insurer bears the entire tax burden, while 
 = 1 when the insured

does pay the full amount of the tax. Note that the marginal implications of this study would stay

valid in the scenario where the loss value x was higher than a given number, say A, to be tax

eligible. In this case, x would be replaced by x0 = x+ A:

The insurer's problem [P ] is to maximize his expected pro�t and can be written as:

(2.1) MaximizeI;a
Z 1

x0

[x� I(x)� (1� 
)tI(x)]f(xja; x0)dx

subject to the Participation Constraint

(2.2)
Z 1

x0

u [(1� t
) I(x); �] f(xja; x0)dx� c(a) = U;

and the Incentive Compatibility Constraint

(2.3)
Z 1

x0

u [(1� t
) I(x); �] fa(xja; x0)dx� c0 (a) = 0:

We make three additional assumptions:
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Assumption 1- For a given care level, the distribution of losses follows a Gamma distribution

(2.4) xja � � (p; a) ;

2 where parameter p is a shape parameter controlling the scope of the distribution, while a is

a scale parameter3. Density functions for different values of p and a are presented in Figures

1a-1b of Appendix 3 for a low effort level (a=1, dotted line), a medium effort level (a=5, thin

continuous line) and a higher effort level (a=10, thick line). The Gamma distribution is particularly

�tted to the case of insurance claims for its non-negative nature and the light nature of the tail of

the distribution, as opposed to �re or liability insurance for example (see Klugman, Panjer and

Willmot, 2004 for more details). Furthermore, this distribution veri�es the "�rst-order approach"

validation conditions Jewitt (1988, Theorem 1). Indeed,

yZ
x0

F (xja; x0)dx =
1

�(p)

yZ
x0



�
p;
x

a

�
dx;

where 
 (p; x=a) =

x
aZ

x0

tp�1e�tdt and @
(p;xa)
@a

= � x
a2

�
x
a

�p�1
e�

x
a , is non-increasing convex in a for

each value of y;
+1Z
�1

xF (xja; x0)dx = ap+ x0

is non decreasing concave in a, and

(2.5)
fa(xja; x0)
f(xja; x0)

=
x� ap� x0

a2

is non-decreasing concave in x for each value of a: More details on the properties of this dis-

tribution are given in Table 1 of Appendix 1. We later compare our results to two alternative

2The density function for the gamma distribution is given by:f (xja; x0) = f(x; p; a; x0) =
1

ap�(p) (x� x0)
p�1

e�(x�x0)=a; for x 2 [x0;1); where � (p) =
R1
x0
e�ttp�1dt:

3See Bose et al, 2011 for another application of this distribution to principal-agent models.
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distributions (see Figures 1c-1d of Appendix 3): one proposed by Rogerson (1985) and one pro-

posed by LiCalzi and Spaeter (2003). Some properties of these distributions are also reported in

Table 1 of Appendix 1.

Assumption 2- We impose conditions on the shape of the insured utility function u(I(x)) using

a general class of utility functions that satisfy Jewitt (1988) conditions validating the "�rst-order

approach".

Proposition 1. Let !(z) = u
�
u�1I

�
1
z

��
for all z > 0; x > 0: Assume that

!(z) = K + zD;

where D > 0 is independent of z and K is a positive constant. Then

(2.6) u(I(x)) = K +
p
2DI(x):

Proof. See Appendix 2 �

The above utility function has two key properties: an upward slope, and a concave shape. (i) The

upward slope implies that the person feels that more of I (x) is better: a larger amount received

yields greater utility, and the person always prefers a payment that is �rst-order stochastically dom-

inant over an alternative one.4 (ii) The concavity of the utility function implies that the person is

risk averse: a sure amount is always preferred over a random amount having the same expected

value. The risk attitude is directly related to the curvature of the utility function: risk neutral in-

dividuals have linear utility functions, risk seeking individuals have convex utility functions while

risk averse individuals have concave utility functions. The degree of risk aversion can be measured

by the curvature of the utility function. In the speci�cation above, D controls for the degree of

risk aversion: the higher D, the more concave u(I) (note that uII(I) = �1
4

q
2D
I3
). In other words,

it takes more payments I(x) to a low risk averse individual (D low) than to a high risk averse

individual (D high) to provide the same amount of utility. In other words, the more risk averse the

insured is, the more he agrees to spend in co-pay, hence possessing less insurance than a less risk
4In this case, the distribution function of one payment is preferred to another regardless of what u() is, as long as it is
weakly increasing.



10 CHRISTELLE VIAUROUX

averse individual. The constant K is linear in u(:) but is independent of I(x): It can be de�ned as

K := R + h� = R + h(Y � �), where R may be seen as a measure of the provider's reputation

and h is the marginal utility of income. Hence, K gives a measure of percieved security or ease

of mind of the insured when contracting with his insurance provider. This security feeling may

come from his wealth or from the reputation of the company. For example, if the provider is a well

known established company (R is high), the insured may not worry about getting the payment,

which would increase his overall satisfaction.

Let

� := 1 + (1� 
)t and � := (1� t
)

for brevity. The Lagrangian corresponding to the Principal's Problem [P ] is

L =

Z 1

x0

[x� �I(x)] f(xja; x0)dx+ �
�Z 1

x0

u [�I(x)] f(xja; x0)dx� c(a)� U
�

+ �

�Z 1

x0

u [�I(x)] fa(xja; x0)dx� c0(a)
�
:

Proposition 2. Under assumptions (2.4) and (2.6), [P ] is characterized by

(2.7) � =
a2�c0(a)

�Dp
;

(2.8) � =
�

D�

�
U + c(a)�K

�
;

(2.9) I (x) =
1

2D�

��
U + c(a)�K

�
+
c0(a)(x� ap� x0)

p

�2
:

Proof. See Appendix 2. �

Equation (2.9) shows that when reservation utility U is high and K is low, it is necessary for

the company to increase the payout I (x) in order to ensure acceptance of the contract by the

insured. Moreover, the higher the share of the tax 
 paid by the insured, the higher the insurance

payout (Respectively, the higher the share paid by the insurance company, the lower the insurance

payout). Note that insurance payouts are higher for individuals with higher self-protection costs
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and this increase in payment varies with the cost of self-protection. In other words, the contract is

such that "sicker" individuals should receive higher payments.

Assumption 3: The cost of self protection/loss reduction is generally speci�ed as:

(2.10) c(a) = AaB A > 0; B � 1

Lemma 3. Under (2.4),(2.6) and (2.10), there exist at least one positive solution a.

Proof. See Appendix 2. �

3. COMPARATIVE STATICS

This section is devoted to the analysis of the effect of a change in the insured tax share on

variables such as his effort to invest in self-protection, the average payments of the insurance

provider out to the insured, the provider's pro�t and the overall social welfare. We present these

effects assuming three alternative speci�cations of the loss distribution.

3.1. De�nitions. Let us denote by E(I), E(�) and E(W ), the expected payments, the expected

pro�t and expected social welfare induced by [P ]: Their expressions are as follows:

E(I) =

Z
D�

2�2

�
�+ �

fa(xja; x0)
f(xja; x0)

�2
f(xja; x0)dx

=
1

2D�

Z 0B@�U + c(a)�K�+ c0(a)R hfa(xja;x0)
f(xja;x0)

i2
f(xja; x0)dx

fa(xja; x0)
f(xja; x0)

1CA
2

f(xja; x0)dx

=
1

2D�

264�U + c(a)�K�2 + (c0(a))2R hfa(xja;x0)
f(xja;x0)

i2
f(xja; x0)dx

375
where the third equality follows from the square expansion of the second equality and from the

fact that
R
fa(xja; x0)dx = 0:

Let E(xja) �
R
xf(xja; x0)dx: The expected pro�t of the insurer can be written:

E(�) =

Z
[x� �I(x)]f(xja) dx = E(xja)� �E(I)
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Finally, since welfare is

W (x) = x� �I(x) + (2D�I(x))1=2 � c(a);

E(W ) = E(xja)� �E(I) + (2D�)1=2
Z
I(x)1=2f(xja) dx� c(a);

= E(xja)� �E(I) +
Z
jM(xja)j f(xja) dx� c(a);

whereM(xja) = U + c(a)�K + c0(a)R h fa(xja;x0)
f(xja;x0)

i2
f(xja;x0)dx

fa(xja;x0)
f(xja;x0) : Hence,

E(W ) = E(xja)� �E(I) + U �K if jM(xja)j > 0

= E(xja)� �E(I)� U � 2c(a) +K if jM(xja)j < 0

Consequently, we have:

@E(I)

@

=

1

D�

264U + c(a)�K +
c00(a)R hfa(xja;x0)

f(xja;x0)

i2
f(xja; x0)dx

375 c0(a)@a
@

+
t

�
E(I);

@E(�)

@

=
@E(xja)
@a

@a

@

+ tE(I)� �@E(I)

@

;

and

@E(W )

@

=

@E(xja)
@a

@a

@

+ tE(I)� �@E(I)

@

if jM(xja)j > 0;

=
@E(xja)
@a

@a

@

+ tE(I)� �@E(I)

@

� 2ABaB�1 @a

@

if jM(xja)j < 0:

As anticipated, the expected payments out to the insured increase with 
 (decrease with 1 � 
)

and decrease with D. They are higher when the insured has outside contracts possibilities, when

his cost of investment in self-protection is higher and when his marginal cost of investment in

self-protection is higher. Expected pro�ts increase with average claims and decrease with aver-

age payments. Finally, expected welfare depends on how the cost of investment compares to the

relative attractiveness of the insurance provider. More speci�cally, c0(a) is the marginal cost of
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investment, fa(xja;x0)
f(xja;x0) measures the change in the probability of a loss when the insured invests in

one more unit of self-protection, and
R hfa(xja;x0)

f(xja;x0)

i2
f(xja; x0)dx measures the variability of the

change fa(xja;x0)
f(xja;x0) : Consequently, welfare is lower following an increase in the insured tax share if

the total cost of investing in self-protection (following a one unit change in investment) is lower

than the relative bene�t (independent of coverage) from contracting with the providerK �U: It is

higher otherwise.

Note that under the assumption of competitive insurance markets, solutions to [P ] remain un-

changed5. However, expected welfare becomes:

E(W ) = tE(I) +

Z
jM(xja)j f(xja) dx� c(a);

= tE(I) + U �K if jM(xja)j > 0;

= tE(I)� U +K � 2c(a) if jM(xja)j < 0;

and the effect of an increase in the insured's tax share on welfare would be

@E(W )

@

= t

@E(I)

@

if jM(xja)j > 0;

= t
@E(I)

@

� 2c0(a)@a

@

if jM(xja)j < 0:

3.2. The Gamma Distribution.

3.2.1. General Results. The theorem below establishes a relationship between the amount of effort

of the insured and his share 
 of the tax.

Theorem 4. Under assumptions (2.4),(2.6) and (2.10) there is a negative relationship between the

share of the tax paid by the insured and his effort level:

(3.1)
@a

@

=

�t2p2D
�2ABaB�2

�
AB (2B � 1) aB

�
p2

2
+ p

B
+B + 1

�
+ p

�
U �K

�
(B � 1)

�
Proof. See Appendix 2. �

5The characterization of optimal competitive insurance contracts extends to any Pareto-optimal contracts, including
the case where there is market power on the sellers side of the market (Winter, 2000).
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Equation (3.1) shows that when K is suf�ciently low or U is suf�ciently large so that U � K,

increasing 
 will decrease effort (respectively increasing 1� 
 will increase effort). Note that the

magnitude of the effect becomes smaller as it becomes more dif�cult to self-protect.

3.2.2. An application with closed form solutions. In a different context, Gupta and Viauroux

(2009) consider an example of (2.6) where K = 0; D = 2 and c(a) = a2; i.e.

(3.2) UA(I; a) = 2�
1=2I1=2 � a2:6

This example is of particular interest for two reasons. First, it is representative of a low income

population (K = 0) with rather high coverage (D = 2) and an increasing marginal cost of invest-

ment. Recall that one of the tax policy goals is to increase coverage for low income individuals.

Second, solutions to [P ] under (3.2) have closed form solutions. A characterization of the optimal

contract and of the policy implications are summarized in the proposition below7:

Proposition 5. Under assumptions (2.4) and (3.2),

(a) there exist an optimal amount of effort induced by the insurance premium strategy. Let

K := pU
3(p2+p+6)

and L := � p2(1�t
)
2(p2+p+6)(1+t�t
) ; the optimal effort amounts to:

a =
3

q
�L+

p
L2 +K3 +

3

q
�L�

p
L2 +K3;

(b) there is a negative relationship between the share of the tax assumed by the insured and his

effort level:

(3.3)
@a

@

=

�t2p2

�2
h
p2(1�t
)

a
+ 2a2 [p+ p2 + 6]

i < 0
(c) the sign of @E(I)

@

is ambiguous:

6Note that this utility function satis�es the properties of Von-Neumann and Morgenstern. Let u = 2�1=2I1=2 � a2and
v = u(J; a) = 2�1=2J1=2 � a2: For k (u) = Au + B for A > 0 , B a real constant, we can easily show that u > v
implies (1) k(u) > k(v) and (2) k [�u+ (1� �)v] = �k [u] + (1 � �)k [v] : Indeed, let I > J so that u > v:

From the monotony of function x1=2; (1) is immediate. Moreover, �k [u] + (1 � �)k [v] = �A2�1=2I1=2 + (1 �
�)A2�1=2J1=2 �Aa2 +B = k [�u+ (1� �)v] : Hence, (2) is veri�ed.
7The proof is available to the reader on request.
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when U = 0;

@E(I)

@

< 0 if

2 + t�
p
1 + 4t

t
< 
 <

2 + t+
p
1 + 4t

t
(3.4)

@E(I)

@

> 0 otherwise,

when U > 0; a suf�cient condition for @E(I)
@


to be positive is that

�2
�
1� 2Ua

p�

�
> 4t:

A suf�cient condition for @E(I)
@


to be negative is that

�

"
1 + pU

1 + U
a2�

(p+ 4)a2 + pU
�# (�+ 2) < 4t:

(d) @E(�)
@


< 0; i.e. the principal's expected pro�t is a decreasing function of 
; for all 
 2 [0; 1].

(e) @E(W )
@


< 0; i.e. expected welfare is a decreasing function of 
;for all 
 2 [0; 1].

Equation (3.3) shows that increasing the tax share paid by the insured (or decreasing the tax

share paid by the insurer) decreases the insured effort to self-protect. And this impact on effort is

all the more pronounced than the tax rate t is higher, than the insured' share of the tax is higher and

than the optimal (current) effort level is lower. The intuition is the insured substitutes care services

(medical for example) for self-protection when the insured pays more for insurance (through the

tax). Equation (3.4) also shows that in absence of outside insurance competition (U = 0), an

increase in the insured's tax share increases the average coverage amount. This is true except for a

small interval of 
; i.e. when the tax rate t > 3
4
(since 
 � 1). 8

We �nd an increase in the insured's tax share decreases the company's pro�t. For suf�ciently

big output, welfare can be reduced by an amount increasing with the tax rate, with the insured'

share of the tax paid by the insured and with the number of outside contract possibilities.

8The following table reports the cases of high taxes and high shares paid by the insured for which the impact of a
change in 
 would be negative; in all other cases, the impact is positive

t 0.75 0.8 0.85 0.9 0.95 0.99

j @E(w)

@
 <0
(0:84; 1) (0:94; 1) (0:88; 1) (0:84; 1) (0:8; 1) (0:77; 1)
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3.3. Alternative distributions. In this section, we present additional conclusions under alterna-

tive conditional distributions of losses.

3.3.1. Rogerson (1985) distribution: Rogerson (1985) proposes the following cumulative distrib-

ution function:

(3.5) F (x) = xa; x 2 [0; 1]

Proposition 6. Let Z =
�
1
p
+B + 1

B
� 1
�
: Under assumptions (3.5),(2.6), and (2.10), we have:

(3.6)
@a

@

=

�ABt2aB�1
�
ABaBZ + U �K

�
Dp�2

�
2

(a+1)3
+ AB

Dp
�
�
aB�2

�
(B � 1)

�
ABaBZ + U �K

�
+ (AB2aBZ)

��
Provided that A � 0 and B � 1; we see that increasing the insured's tax share(or lowering

the share of the insurance provider) decreases investment in self-protection unless K becomes

suf�ciently large. This result is consistent with the result obtained with a Gamma distribution of

losses.

3.3.2. LiCalzi and Spaeter (2003) distribution: One of the distributions satisfying the "�rst-order"

approach proposed by LiCalzi and Spaeter (2003) has the cumulative distribution function:

(3.7) F (x) = x+
x� x2
1 + a

; x 2 [0; 1]

Proposition 7. Under assumptions (2.6), (2.10) and (3.7), we have the following result:

(3.8)
@a

@

=

�Dpt2a1�2B

6�2A2B2

0B@ Dp�(2B�1)a�2B
6A2B2�

+ 3a2

2p

�
(a+1)
a(a+2)

+ 2
(a+1)

+ 3
2
ln( a

a+2
)
�

+a3

2p

�
�a2�2a�2
a2(a+2)2

� 2
(a+1)2

+ 3
a(a+2)

�
+ 2B(a+ 1) + 2a

1CA
:

Again here, we may observe a decrease in self-protection investment on the part of the insured

when his tax share increases, provided that the denominator is positive.
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4. SIMULATIONS

Tables 1 through 5 in Appendix 3 summarize the results of a change in the insured' share of

the tax under optimal contract conditions, general preferences (2.6) and cost speci�cations (2.10).

More speci�cally, they report simulation results of the effect of an increase in 
 (or a decrease

in 1 � 
) on the level of effort a invested in improving self-protection or loss reduction, on the

expected insurance payment from the provider to the insured E(I), on the expected pro�t of the

insurance providerE(�) and on the overall expected welfareE(W ):We analyze these effects for a

[0; 1] range of 
 values and for various degrees of individuals risk aversion D 2 [1; 10] :We report

the effects of the policy for two optimal levels of effort invested in self-protection: low (a = 1)

and high: (a = 10). We assume three possible parametric speci�cations of the loss distribution

as mentioned above. Note that the Rogerson (1985) distribution is a uniform distribution when

a = 1: Table 5 reports the results in case of competitive insurance markets. In all cases, we use a

tax rate t = 40%, a unit cost of investment in self-protection/loss reduction A = 1 and we analyze

the effect of an increase in 
 for different values of B and K.

In order to give an intuitive interpretation of the effect of the tax policy change, it is important

to remember that:

(1) An increase in 
 represents an increase in the insured' share of the tax and a decrease in

the insurance provider' share of the tax (1� 
).

(2) The more risk averse the insured (D high), the less insurance coverage, and the more co-

pay spending.

(3) The cost of investing in self-protection or in loss reduction is controlled by parameters A

andB:More speci�cally,B measures the convexity of the cost. WhenB � 2, the marginal

cost of effort is increasing at an increasing rate. Hence, as investment in self-protection

increases, it becomes increasingly dif�cult for the insured to protect himself against loss

or damage. Typically, a young/uneducated and healthy individual may have a constant

marginal cost of investment. The assumption that B = 1 for example, where the cost is

directly proportional to the effort could represent the cost of this individual. In this case,

rather little is needed for the insured to reduce the occurrence of a damage. In contrast,
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an elderly/unhealthy individual may �nd it increasingly dif�cult to protect himself against

potential loss/accident as additional effort is made because the return to any investment

becomes very small very quickly.

(4) Parameter U measures the reservation utility, i.e. the number of outside insurance contracts

opportunities. A high value of U characterizes a "good" customer, while a low value of U

characterizes a "dependent" customer whose personal situation prevent him from leaving

easily their insurance provider.

(5) Finally, as is mentioned before,K gives a measure of percieved security or ease of mind of

the insured at contracting with his insurance provider. The ease of mind may be explained

by the insurer's reputation or by the fact that his wealth is suf�ciently large to cover some

unexpected losses. Hence, when K is large relative to U , the insured has no incentive to

leave the current company.

Simulation results are as follows. First, we �nd that any increase in the insured's tax share

decreases his incentive to prevent loss; in other words, maximum effort on the part of the insured

is achieved when the insurer pays the full amount of the tax. This conclusion is valid whether the

insured is careless i.e. not much involved in protecting themselves against loss (a = 1, see Table

1 c.4-5, l.2), or not (a = 10, Table 1 l.8). Instead, the insured decides to rely more heavily on care

services, substituting them for self-protection (Steward, 1994). Of course, each individual may

well recognize that "excess" use of care makes the premium he must pay rise. No individual will

be motivated to restrain his own use, however, since the incremental bene�t to him for excess use

is great, while the additional cost of his use is largely spread over other insurance holders, and so

he bears only a tiny fraction of the cost of his use. It would be better for all insurance bene�ciaries

to restrain their use, but such a result is not forthcoming because the strategy of "restrain use" is

dominated by that of "use excess care" : the insured �nd themselves in a "prisoners' dilemma" (see

Pauly, 1974). Note also that this result generalizes the result from Section 3-2-2. An exception

occurs when losses are uniformly distributed (Table 1, c.2) and the insured is unable to anticipate

the size of future losses and their associated future tax amount. In this case, the fear of losing

insurance coverage may trigger a sense of responsibility and increase the insured's effort. This is
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true especially when the insured is satis�ed with his insurance provider and has no or little contract

opportunities from alternative providers (U = 0; 10;K = 100; Table 1, c. 2, l. 4-5).

We �nd any increase in 
 triggers higher average insurance payments (Table 2) unless the

provider identi�es the insured has invested only marginally in self protection and is unsure about

keeping insurance with them. Payments are lower for careless individuals (a = 1) with con-

stant marginal cost of effort (B = 1) whose propensity to switch to a different provider (U close

to or equal to K) is high. In this case, little can be done by the provider to keep the contract.

This suggests the insurance provider may try to retain other individuals'contract by giving them

rent (through higher insurance coverage). Note that an increase in average payments generates a

decline in pro�ts (Tables 3a-b).

The impact on overall welfare is ambiguous (Tables 4a-b).

Assuming losses are Gamma distributed, we �nd an increase in 
 generates a decrease in welfare

among careless insured (a = 1) and this negative impact on welfare remains in more specialized

insurance markets (Table 4a, c.5), i.e. for a narrower loss distribution (p = 100). In this case, the

overall decrease in provider's pro�t due to higher payments to the insured is greater than the gain

in insured' satisfaction (from higher payments and lower costs of effort) and government revenue.

Welfare is found to increase only for the population of young and healthy individuals with constant

marginal cost of effort (B = 1) and many outside opportunities (U = 100; K = 0; 10; Table 4a,

c.4, l.6). The idea is that this population may not respond much to the tax policy, increasing

insurance payments and insurance satisfaction (from low cost decreased effort) only marginally.

Hence, welfare is mostly generated by government revenue. In case of more specialized market

too, a positive welfare impact is found for individuals whose health/socio-economic situations

make self-protection dif�cult (B = 5), triggering only a low response to the tax policy.

The effect of an increase in on welfare is ambiguous for more cautious insured (a = 10). It is

negative for insured with constant marginal cost of effort (B = 1; Table 4b, c.4-5, l.3). It is positive,

however, for individuals whose cost of effort is high and convex (B = 2; 5 for p = 10;Table 4b, c4.,

l2,l4; B = 5 for p = 100; Table 4b, c5., l4) and this positive effect is independent of the assumed

distribution of losses. Intuitively, the marginal cost of effort is much higher than in case a = 1
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above. Hence, reducing effort leads to a greater rise in satisfaction when a = 10 than it would

if a were lower. Consequently, the signi�cant increase in consumer satisfaction plus the added

government revenue more than compensates the provider's loss in pro�t (due to higher payments).

In a more specialized market (p = 100; a = 10), simulation results, under a Gamma distribution

of losses, show increasing the insured's tax share decreases welfare unless it is very hard for the

insured to self-protect (B = 5;Table 4b, c.5, l.4), in which case decreasing self-protection a slight

amount substantially increases the insured's utility. In this case, the provider's losses are large

relative to the increased government revenue and insured's utility.

Our results for effort level, average payments and pro�ts are robust to (1) LiCalzi and Spaeter

(2003) and to (2) Rogerson (1985) conditional distributions of losses when a = 1 . However, in

(1), an increase in the insured's tax share always increases welfare. In (2) and under a gamma

distribution of losses however, an increase in welfare is observed only for healthy insured (U =

100; K = 0; 10; Table 4b,c.1,l2) that feel unsure about keeping their insurance contract with the

current provider. Intuitively, these insured respond poorly to the tax policy. Otherwise, we observe

a decrease in welfare for insured with low cost of effort (B = 1; Table 4b, c.2,l.6), with no or little

alternative insurance opportunity but who feel comfortable dealing with their current provider. In

this case, a large increase in effort decreases satisfaction a lot.

Our simulations allow to go beyond the general results above and to conclude according to the

type of insurance contract. For example, we �nd that as the insured becomes more risk averse

and bears higher co-pay, any increase in the insured's tax share reduces the insured's effort to self

protect further(the negative impact becomes more negative asD increases, see Table 1, c.3,4,5, l.2

and l.8). The intuition is the following: "If I pay for most of my losses, an additional payment

from the tax reinforces my incentive to increase my use of care services as opposed to investing

additional money for future protection". Here, less income is associated to more services. This is

true under the Gamma and LiCalzi and Spaeter (2003) distributions of losses. The conclusion is

reversed when the distribution of losses is uniform (Rogerson, 1985). In this case, we observe a

positive income effect (the negative impact becomes less negative asD increases, see Table 1, c.2,

l.2 and 8). In other words, "The higher my copay, the more likely a tax will give me the motivation
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to protect myself against loss and save on future taxes. Tax savings can be used toward future

services." This may be explained by the presence of uncertainty about taxes on future insurance

payments.

Next, we �nd an increase in the insured's tax share increases average payments less as insurance

coverage decreases (the positive impact decreases withD, see Table 2, l.2 and l.8). This is intuitive

since payments become smaller as risk aversion (and co-pay) increases. An exception exists under

a Rogerson (1985) distribution of losses. Under this assumption, payments can be slightly higher

for individuals with full coverage (D small) whose propensity to leaving the provider is high (Table

2, c.2, l.5). This result suggests, as above, that the provider gives a rent to "good customers".

In fact, the insurance provider seems to face a trade off between retaining lots of contracts and

retaining "good" contracts. For example, within the population of cautious insured (a = 10),

the company only pays rent to healthy individuals (B = 1). The rent is given to a wider range

of individuals (B = 1; 2) only when there is room for improvement in self-protection (a = 1).

Finally, the company will not try to retain individuals whose cost of effort is very high (B = 5) as

payments to these insured are likely to be higher.

The increase in payments above translates into a loss in provider's pro�t (Table 3a-b,l.2), of

greater magnitude as gamma 
 increases and lower magniture as the co-pay increases. Losses

are higher for careless individuals (a = 1) with high copay (Table 3a, c.4-5, l.3,5,6,7) who are

unsure about keeping their current provider. This is consistent with the above conclusion that

the provider pays a rent to retain some contracts. This conclusion does not hold (Table 3b) for

cautious individuals (a = 10) who �nd it dif�cult to protect themselves further (B � 2) ; instead,

we observe that pro�t is uniformly increasing with D: the more risk averse (the less insured), the

more sensitive to the tax the insured is.

When markets are assumed competitive (Table 5), our results show an increase in the insured's

share increases welfare and the positive effect decreases with the degree of risk aversion of the

individual: less insurance means less tax revenue. An exception occurs for the subpopulation of

insured, with linear cost of effort, who consider leaving their current provider. In this case, the
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positive impact of the tax decreases to a minimum (when D� 6) then increases. Intuitively, the in-

sured that are likely to leave (D high) their provider decrease their investment in self-protection/loss

reduction to a greater extent; hence increasing their utility and the overall welfare gains.

5. CONCLUSION-EXTENSIONS

In this paper, we have evaluated the economic impacts of imposing a tax on insurance payment

in presence of moral hazard. The analysis shows that the overall trend of current policies go toward

greater welfare. It shows however that the policy may have an effect contrary to the intended one

for some individuals, especially those who already invested highly in self-protection. This result

opens to a broader discussion on unintended consequences of government policies in presence of

moral hazard. A variety of programs help people who suffer the misfortune of poverty. Unemploy-

ment compensation pays people who suffer the misfortune of losing their jobs. Food stamps and

public housing help the poor. Yet all these programs also suffer from problems of moral hazard.

They increase unemployment and poverty. As the government expands a program to provide more

aid to those in distress, it also encourages people to put themselves in distress. If people are paid to

be poor, some will become poor. If people are paid to be unemployed, more will be unemployed.

If it sometimes gives so little aid to those in distress that it provides little encouragement for people

to put themselves in the situation, it then also provides little help for those in distress. Thus gov-

ernment programs that act to insure citizens against some misfortunes have a basic tradeoff that

cannot be escaped. Greater efforts to help those in need also increase actions that are considered

socially undesirable. Unintended consequences abound in the area of moral hazard.

REFERENCES

[1] Arnott, R., 1992, Moral Hazard and Competitive Insurance Markets, in G. Dionne, ed., Con-

tributions to Insurance Economics (Boston, MA: Kluwer Academic Publishers).

[2] Abbring, J. H., Chiappori, P-A, and J. Pinquet, 2003, Moral hazard and dynamic insurance

data, Journal of the European Economic Association, 1, 767�820.

[3] Arrow, K. J., 1963, Uncertainty and the Welfare Economics of Medical Care, American Eco-

nomic Review, 53(5), 941�973.



References 23

[4] Bose, A., Pal, D. and D.E.M Sappington, 2011, On the Performance of Linear Contracts, The

Journal of Economics and Management Strategy, 20(1), 159-193.

[5] Chiappori, P-A, P.Y. Geoffard and F. Durand, 1997, Moral Hazard and the Demand for Physi-

cian Services : Lessons from a French Natural Experiment, European Economic Review,

41, 943-950.

[6] Chiappori, P-A and B. Salanié, 1997, Empirical Contract Theory: the Case of Insurance Data,

European Economic Review, 41, 943-950.

[7] Dionne, G., Doherty, N., and N. Fombaron, 2000, Adverse Selection in Insurance Markets,

in G. Dionne, ed., Handbook of Insurance (Boston, MA: Kluwer Academic Publishers).

[8] Dionne, G., Michaud, P.C., Dahchour, M., Separating Moral Hazard from Adverse Selection

and Learning in Automobile Insurance: Longitudinal Evidence from France, Journal of

the European Economic Association (forthcoming).

[9] Dionne, G., Gagné, R., Gagnon, F., Vanasse, C., Debt, 1997, Moral Hazard and Airline

Safety: an Empirical Evidence, Journal of Econometrics, 79, 379-402.

[10] Doherty, N. and K. Smetters, 2005, Moral Hazard in Reinsurance Markets, Journal of Risk

and Insurance, 72(3), 375-391.

[11] Ehrlich, I. and G. Becker, 1972, Market Insurance, Self-Insurance and Self-Protection, Jour-

nal of Political Economy, 623-648.

[12] Friedman, B., 1974, Risk Aversion and the Consumer Choice of Health Insurance Option,

The Review of Economics and Statistics, 56(2), 209-214.

[13] Gupta B and C. Viauroux, 2011, Is Tax Sharing Optimal: An Analysis in a Principal Agent

framework, UMBC working paper 09-105.

[14] Gollier, C., 2000, Optimal Insurance Design: What can we do with and without Expected

Utility in G. Dionne, ed., Handbook of Insurance (Boston, MA: Kluwer Academic Pub-

lishers).

[15] Holmstrom, B., 1979, Moral Hazard and Observability, Bell Journal of Economics, 10(1),

74�91.



24 References

[16] Jewitt, I., 1988, Justifying the First-Order Approach to Principal�Agent Problems, Econo-

metrica, 56:5, 1177�1190.

[17] Ketsche, P.G., 2004, An Analysis of the Effect of Tax Policy on Health Insurance Purchases

by Risk Group, The Journal of Risk and Insurance, 71(1), 91-113.

[18] Klugman, S.K, Panjer, H.H. and Willmot, G.E. , 2004. Loss models: from data to decisions

(New York, NY: John Wiley and Sons, Inc).

[19] Koç, 2011, Disease-Speci�c Moral Hazard and Optimal Health Insurance Design for Physi-

cian Services, The Journal of Risk and Insurance, 78(2), 413-446.

[20] Laffont, J-J. and D. Martimort, 2002, The Theory of Incentives: The Principal Agent Model

(Princeton, NJ: Princeton University Press).

[21] Lewis, T. R. and D. E. M. Sappington, Insurance, Adverse Selection and Cream-Skimming,

Journal of Economic Theory, 65, 327-358.

[22] LiCalzi, M. and S. Spaeter, 2003, Distributions for the �rst-order approach to principal-agent

problems, Economic Theory, 21, 167-173.

[23] MasColell, A., Whinston, M. and J. Green, 1995, Microeconomic Theory (New York, NY:

Oxford University Press).

[24] Mirrlees, J., 1975, The Theory of Moral Hazard and Unobservable Behaviour, Part I,Mimeo,

Nuf�eld College, Oxford.

[25] Pauly, M., 1968, The Economics of Moral Hazard: Comment, The American Economic Re-

view, 58(3), 531-537.

[26] Pauly, M., 1974, Overinsurance and Public Provision of Insurance: The role of Moral Hazard

and Adverse Selection, Quarterly Journal of Economics, 44-62.

[27] Rogerson, W.P., The First-Order Approach to Principal-Agent Problems, Econometrica,

53(6), 1357-1367.

[28] Shavell, S., 1979, On Moral Hazard and Insurance, Quarterly Journal of Economics, 541-

562.

[29] Stewart, J., 1994, The Welfare Implications of Moral Hazard and Adverse Selection in Com-

petitive insurance markets, Economic Inquiry, 32(2), 193-208.



References 25

[30] Villeneuve, B, 2000, Life Insurance, in G. Dionne, ed., Handbook of Insurance (Dordrecht,

Netherlands: Kluwer Academic Publishers).

[31] Wang, J.L., Chung, C-F, and Tzeng, L.Y, 2008, An Empirical Analysis of the Effects of

Increasing Deductibles on Moral Hazard, The Journal of Risk and Insurance, 75(3),551-

566.

[32] Winter, R.A., 1992, Moral Hazard and Insurance Contracts in G. Dionne, ed., Handbook of

Insurance (Dordrecht, Netherlands: Kluwer Academic Publishers).

[33] Winter, R.A., 2000, Optimal Insurance under Moral Hazard in G. Dionne, ed., Handbook of

Insurance (Dordrecht, Netherlands: Kluwer Academic Publishers).

6. APPENDIX 1

Table 1: Some distribution properties
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7. APPENDIX 2:

Proof of Proposition 1. If we de�ne

(7.1) u(y) := K +
p
2Dy; y > 0

with D > 0:We have

uy(y) =

s
D

2y
=: 1=z;

meaning that r
2y

D
=: z or

p
2yD =: Dz;

and hence

u(u�1y (1=z)) = u(y) = K +
p
2Dy = K +Dz: �

Proof of Proposition 2. Let us assume that y = �I , then (7.1) becomes:

(7.2) u(�I) := K +
p
2D�I; I > 0

uI(�I) =

s
�2D

2I�
:

Denote by u�1I (x); the reciprocal function of uI(x) :=
q

�2D
2x
:We have

(7.3) u�1I (x) =
�2D

2x2
:

Hence,

(7.4) u

�
u�1I (

1

z
)

�
= u

 
�2D

2
�
1
z

�2
!
= u

�
D�2z2

2

�
= K +D�z:

Proposition 2 then follows from the maximization of L with respect to I , �, �.

Step 1. Pointwise maximization of L with respect to I yields

@L
@I

= ��f(xja; x0) + �uI (�I(x)) f(xja; x0) + �uI (�I(x)) fa(xja; x0) = 0
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or

(7.5) �+ �
fa(xja; x0)
f(xja; x0)

=
�

uI (�I(x))
:

Since uI is invertible, (7.5) gives:

(7.6) I(x) =
1

�
u�1I

 
�

�+ �fa(xja;x0)
f(xja;x0)

!
:

Finally, using (7.3) we have:

(7.7) I (x) =
D�

2�2

�
�+ �

fa(xja; x0)
f(xja; x0)

�2
:

Step 2. Maximization of L with respect to �, using (7.6) gives

Z 1

x0

u

24u�1I
0@ ��

�+ �fa(xja;x0)
f(xja;x0)

�
1A35 f(xja; x0)dx = U + c(a):

Substituting (7.4), the preceding equality becomesZ 1

x0

�
K +

D�

�

�
�+ �

fa(xja; x0)
f(xja; x0)

��
f(xja; x0)dx = U + c(a);

and since

(7.8)
Z 1

x0

fa(xja; x0)dx = 0;

solving for � gives (2.8).

Step 3. Maximization of L with respect to � yieldsZ 1

x0

u [�I(x)] fa(xja; x0)dx = c0(a):

Using (2.9) and (7.4), we haveZ 1

x0

�
K +

D��

�

�
fa(xja; x0)dx+

D��

�

Z 1

x0

�
fa(xja; x0)
f(xja; x0)

�2
f(xja; x0)dx = c0(a):
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which, using (7.8) and Table 1, c.4, l.8 gives(2.7). Finally, the expression of (2.9) follows

directly from substituting (2.7), (2.8) and (2.5) for �; � and fa
f
in the expression of (7.7). �

Proof of Lemma 3: Maximization of L with respect to a yields

(7.9)
Z 1

x0

[x� �I(x)]fa(xja; x0)dx+ �
�Z 1

x0

u [�I(x)] faa(xja; x0)dx� c00(a)
�
= 0;

Using (7.7),Z 1

x0

[x� �I(x)]fa(xja; x0)dx(7.10)

=

Z 1

x0

xfa(xja; x0)dx� �
Z 1

x0

D�

2�2
�2
fa(xja; x0)
f(xja; x0)

f(xja; x0)dx;

��
Z 1

x0

D�

2�2
�2
�
fa(xja; x0)
f(xja; x0)

�3
f(xja; x0)dx� �

Z 1

x0

2D�

2�2
��

�
fa(xja; x0)
f(xja; x0)

�2
f(xja; x0)dx

where the �rst term simpli�es from Table 1, l.10, c.4, the second term disappears from (7.8), the

third term simpli�es using Table 1, l.9, c.4, and the fourth term simpli�es from Table 1, l.8, c.4.

Finally, we obtain Z 1

x0

[x� �I(x)]fa(xja; x0)dx = p+
D�p3

2�a3
�2 � D�p

�a2
��:

Moreover, we haveZ 1

x0

u(�I(x))
faa(xja; x0)
f(xja; x0)

f(xja; x0)dx

=

Z 1

x0

u(�I(x))

"�
fa(xja; x0)
f(xja; x0)

�2
� 2
a

fa(xja; x0)
f(xja; x0)

� p

a2

#
f(xja; x0)dx;

=

Z 1

x0

u(�I(x))

�
fa(xja; x0)
f(xja; x0)

�2
� 2
a
c0(a)� p

a2
�
U + c(a)

�

=

Z 1

x0

�
K +

D�

�

�
�+ �

fa(xja; x0)
f(xja; x0)

���
fa(xja; x0)
f(xja; x0)

�2
f(xja; x0)dx�

2

a
c0(a)� p

a2
�
U + c(a)

�
=

Z 1

x0

K

�
fa(xja; x0)
f(xja; x0)

�2
f(xja; x0)dx+

D�p

�a2
�� D�p

3

�a3
�� 2

a
c0(a)� p

a2
�
U + c(a)

�



References 29

where the �rst equality is obtained substituting faa(xja;x0)
f(xja;x0) (see Table 1, l.7, c.4), the second equal-

ity uses (2.2) and (2.3), the third equality uses (7.2) and (7.7), the fourth equality is obtained by

doing an expansion of the expression in the third equality and simplifying using Table 1, l.8 and

l.9, c.4. Since Z 1

x0

K

�
fa(xja; x0)
f(xja; x0)

�2
f(xja; x0)dx = K

p

a2

(7.9) �nally becomes

p

�
� D�p

3

2�a3
�+

Kp

a2
� 2
a
c0(a)� p

a2
�
U + c(a)

�
= c00(a)

which, substituting (2.7) and (2.10) for � and c(a) respectively gives

(7.11)
p2�D

�AB
� ABa2B�1

�
p2

2
+
p

B
+B + 1

�
+ p

�
K � U

�
aB�1 = 0

Note that equation (7.11) is of the form

d1 + d2a
2B�1 + d3a

B�1 = 0

where d1 d2; d3 are some constants, independent of a. For example, d1 = p2�D
�AB

;

d2 = �AB
�
p2

2
+ p

B
+B + 1

�
; and d3 = p

�
K � U

�
:

Denoting the left side of (7.11) by f(a), f : [0;1) ! R is a continuous function. Consider

(7.11). Since f(0) = d1 > 0; the lemma follows from the intermediate value theorem if we prove

that f(a) < 0 for large values of a. Let us rewrite f(a) as

f(a) = d1 + a
2B�1 �d2 + d3a�B� :

Since A > 0; B � 1, for a!1 we have

a2B�1 !1 and d2 + d3a�B ! d2 < 0;

so that

a2B�1
�
d2 + d3a

�B�! �1;
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and thus

f(a) = d1 + a
2B�1 �d2 + d3a�B�! �1 �:

Proof of Theorem 4: Sign of @a=@
. Recall that a is characterised by

p2�D

�AB
� ABa2B�1

�
p2

2
+
p

B
+B + 1

�
+ p

�
K � U

�
aB�1 = 0

Since that K and D are independent of 
; and noting that @(
�
�)
@


= �t2
�2
; we have

� t
2p2D

�2AB
� AB (2B � 1) a2B�2

�
p2

2
+
p

B
+B + 1

�
@a

@

+ p

�
K � U

�
(B � 1) aB�2 @a

@

= 0;

or

@a

@

=

�t2p2D
�2ABaB�2

�
AB (2B � 1) aB

�
p2

2
+ p

B
+B + 1

�
+ p

�
U �K

�
(B � 1)

� < 0
Hence,

@a

@

< 0 provided that U �K � 0 �:

Proof of Proposition 6. Recall that maximization of L with respect to a yieldsZ 1

x0

[x� �I(x)]fa(xja; x0)dx+ �
�Z 1

x0

u [�I(x); x] faa(xja; x0)dx� c00(a)
�
= 0;

Under a Rogerson (85) conditional distribution of losses, we have:Z 1

x0

[x� �I(x)]fa(xja; x0)dx =
1

(a+ 1)2
+
D��2

�a3
� D�

�a2
��

where the �rst term of (7.10) simpli�es from Table 1, l.10, c.2, the second term disappears from

the fact that
R1
x0
fa(xja; x0)dx = 0, the third term simpli�es using Table 1, l.9, c.2, and the fourth

term simpli�es from Table 1, l.8, c.2. Moreover, substituting faa(xja;x0)
f(xja;x0) using Table 1, l.7, c.2, (2.2)
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and (2.3) we haveZ 1

x0

u(�I(x); x)
faa(xja; x0)
f(xja; x0)

f(xja; x0)dx

=

Z 1

x0

u(�I(x); x)

�
fa(xja; x0)
f(xja; x0)

+
1

a

��
fa(xja; x0)
f(xja; x0)

� 1
a

�
f(xja; x0)dx;

=

Z 1

x0

u(�I(x); x)

�
fa(xja; x0)
f(xja; x0)

�2
f(xja; x0)dx�

1

a2
�
U + c(a)

�

=

Z 1

x0

�
C(x) +

p
2D�I

��fa(xja; x0)
f(xja; x0)

�2
f(xja; x0)dx�

1

a2
�
U + c(a)

�
=

Z 1

x0

�
K +

D�

�

�
�+ �

fa(xja; x0)
f(xja; x0)

���
fa(xja; x0)
f(xja; x0)

�2
f(xja; x0)dx�

1

a2
�
U + c(a)

�
=

�
K + �

D�

�

�Z 1

x0

�
fa(xja; x0)
f(xja; x0)

�2
f(xja; x0)dx

+ �
D�

�

Z 1

x0

�
fa(xja; x0)
f(xja; x0)

�3
f(xja; x0)dx�

1

a2
�
U + c(a)

�
=

�
K + �

D�

�

�
1

a2
� 2�D�

�a3
� 1

a2
�
U + c(a)

�
where the �rst equality is obtained substituting faa(xja;x0)

f(xja;x0) (see Table 1, l.7, c.2), the second equal-

ity uses (2.2), the third and fourth equality use (2.6) under assumption (7.7), and the last equality

simpli�es using Table 1, l.8 and l.9, c.2.

Finally, the optimal amount of effort for self-protection/loss reduction is characterized by (7.9)

which is

1

(a+ 1)2
+
D��2

�a3
� D�

�a2
��+ �

��
K + �

D�

�

�
1

a2
� 2�D�

�a3
� 1

a2
�
U + c(a)

�
� c00(a)

�
= 0

or, substituting for �; becomes and simplifying gives:

1

(a+ 1)2
� a�c

0(a)2

�Dp2
� �c

0(a)

�Dp

�
U �K + c(a)

�
� c00(a)� = 0
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Now, substitute for c(a) = AaB; c0(a) = ABaB�1; c00(a) = AB (B � 1) aB�2; this equality

simpli�es to:

1

(a+ 1)2
� �A

2B2a2B�1

�Dp

�
1

p
+B � 1

�
� �ABa

B�1

�Dp

�
U �K + AaB

�
= 0

1

(a+ 1)2
� �AB
�Dp

aB�1
�
ABaB

�
1

p
+B +

1

B
� 1
�
+ U �K

�
= 0

Since @(�=�)
@


= �t�+t�
�2

= t2

�2
; taking the derivative with respect to 
 on both sides and solving

for @a
@

gives (3.6) �:

Proof of Proposition 7. We use a reasoning similar to the one above. Under a LiCalzi and Spaeter

(2003) conditional distribution of losses, we have:Z 1

x0

[x� �I(x)]fa(xja; x0)dx

=
1

6(a+ 1)2
� D�
2�
�2
�

1

a(a+ 1)(a+ 2)
+

2

(a+ 1)3
+
3 ln( a

a+2
)

2(a+ 1)2

�
� D�

�
��

 
�1 + (a+1)

2
ln a+2

a

(a+ 1)2

!

=
1

(a+ 1)2

�
1

6
� D�
2�
�2
�
(a+ 1)

a(a+ 2)
+

2

(a+ 1)
+
3

2
ln(

a

a+ 2
)

��
where the �rst equality follows from (7.10) and from the distribution properties (see Table 1,

c.3, l.8 and l.9). Furthermore,Z 1

x0

u(�I(x); x)
faa(xja; x0)
f(xja; x0)

f(xja; x0)dx

=
�2

(1 + a)

Z 1

x0

u(�I(x); x)

�
fa
f

�
f(xja; x0)dx =

�2
(1 + a)

c0(a)

where the �rst equality uses Table 1, c.3, l.7 and the second equality follows from (2.3). Dividing

by �; substituting for the cost function derivatives, dividing by aB�2 and simplifying gives:

1

(a+ 1)2

�
1

6
� D�
2�
�2
�
(a+ 1)

a(a+ 2)
+

2

(a+ 1)
+
3

2
ln(

a

a+ 2
)

��
+ �

�
�2

(1 + a)
c0(a)� c00(a)

�
= 0
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Dp�a1�2B

6A2B2�
� a3

2p

�
(a+ 1)

a(a+ 2)
+

2

(a+ 1)
+
3

2
ln(

a

a+ 2
)

�
�B(a+ 1)2 � a2 + 1 = 0:

Now let us take the derivative on both sides, we obtain (3.8) �:
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8. APPENDIX 3:

Fig.1a: Gamma p.d.f. for p = 10, a = 1; 5; 10 Fig.1b: Gamma p.d.f. for p = 10, a = 1; 5; 10

Fig.1c: Rogerson p.d.f. for p = 10, a = 1; 5; 10

Fig.1d: LiCalzi and Spaeter p.d.f. for p = 10,

a = 1; 5; 10
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Table 1: Effect of tax on effort level

@a
@

; for a = 1

Rogerson

p = 10

LiC:&Sp:

p = 10

Gamma

p = 10

Gamma

p = 100

U= 0; 10; 100�

K = 0; 10; 100

B = 1; 2; 5

< 0

# in 
; sl " in D

< 0

# in 
; # in D

< 0

# in 
; # in D

< 0

# in 
; # in D

Exceptions

U= 0;K = 10

B = 1

< 0jD<4:5 ; > 0jD>5:5
" in 
;

# in DjD<4:5 " in DjD>5:5

NA NA NA

U= 0;K = 10;B = 2

U= 0;K = 100;B = 5

U= 10;K = 100;B = 5

> 0

" in 
; # in D
NA NA NA

U= 0; 10;K = 100

B = 1; 2 for Rogerson

B = 2; 5 for Gamma

< 0

# in 
; # in D
NA

> 0

" in 
; " in D
NA

@a
@

; for a = 10

Rogerson

p = 10

LiC:&Sp:

p = 10

Gamma

p = 10

Gamma

p = 100

U= 0; 10; 100�

K = 0; 10; 100

B = 1

< 0

# in 
; " in D

< 0

# in 
; # in D

< 0

# in 
; # in D

< 0

# in 
; # in D

U= 0; 10; 100�

K = 0; 10; 100

B = 2; 5

< 0

# in 
;�! in D
NA NA NA

Exceptions

U= 0; 10;K = 100

B = 1

< 0

# in 
;�! in D
NA NA NA
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Table 2: Effect of tax on average payouts

@E(I)
@

; for a = 1

Rogerson

p = 10

LiC:&Sp:

p = 10

Gamma

p = 10

Gamma

p = 100

U= 0; 10; 100�

K = 0; 10; 100

B = 1; 2; 5

> 0

" in 
; # in D

> 0

" in 
; # in D

> 0

" in 
; # in D

> 0

" in 
; # in D

Exceptions

U= 0; K = 0

U= 10; K = 10

U= 100; K = 100

B = 1

NA

> 0jD<3 ;

< 0jD>5
#D=3" in 


# in D

> 0jD<1
< 0jD>1
" in 


# in D

> 0jD<1
< 0jD>1
" in 


# in D

U= 0; K = 10

B = 1

> 0jD<4:5 ; < 0jD>5:5
"in 
; # in D

NA NA NA

U= 0; K = 10

B = 2

> 0jD>:5 ; < 0jD<:5
" in 
jD>:5 ; "

1# in D
NA NA NA

@E(I)
@

; for a = 10

Rogerson

p = 10

LiC:&Sp:

p = 10

Gamma

p = 10

Gamma

p = 100

U= 0; 10; 100�

K = 0; 10; 100

B = 1; 2; 5; 10

> 0

" in 
; # in D

> 0

" in 
; # in D

> 0

" in 
; # in D

> 0

" in 
; # in D
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Table 3a: Effect of tax on provider's pro�t (a = 1)

@E(�)
@


; for a = 1
Rogerson

p = 10

LiC:&Sp:

p = 10

Gamma

p = 10

Gamma

p = 100

U= 0; 10; 100�

K = 0; 10; 100

B = 1; 2; 5

< 0

# in 
; " in D

< 0

# in 
; " in D

< 0

# in 
; " in D

< 0

# in 
; " in D

Exceptions

U= 0; K = 0

U= 10; K = 10

U= 100; K = 100

B = 2, for Rogerson

B = 1, for LiC&Sp

B = 1; 2; 5 for Gamma

< 0jD>2
> 0jD<2

" in 
; # in D

> 0

" in 
jD 6=0 ;

"3# in D

< 0

# in 
; # in D

< 0

# in 
; # in D

U= 0; 10; K = 100

U= 100; K = 10;

B = 1

NA NA NA
< 0

# in 
; "7# in D

U= 0; K = 10

B = 2

< 0jD>2:5 > 0jD<2:5
# in 
; #3 " in D

NA
< 0

# in 
; "7# in D

< 0

# in 
; "1# in D

U= 10; K = 0

B = 1; 2
NA NA

< 0

# in 


"3# in D
��
B=1

< 0

# in 


# in DjB=1 ;

"3# in D
��
B=2

U= 0; K = 10

B = 1

< 0jD<5:5
# in 
;

"# in D

< 0jD>7
" in 
;

�! in D

< 0jD<4 ;

> 0jD>5
# in 
; " in D

< 0

# in 
; "2# in D

< 0

# in 
; # in D

U= 0; K = 0

B = 5

< 0j
>0:3 ; > 0j
<0:2
# in 
; " in D

NA NA NA
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Table 3b: Effect of tax on provider's pro�t (a = 10)

@E(�)
@


;for a = 10
Rogerson

p = 10

LiC:&Sp:

p = 10

Gamma

p = 10

Gamma

p = 100

U= 0; 10; 100�

K = 0; 10; 100

B = 1; 2; 5

< 0

# in 
; " in D

< 0

# in 
; " in D

< 0

# in 
; " in D

< 0

# in 
; " in D

Exceptions

U= 0; K = 0

U= 10; K = 10

B = 1

> 0

# in 
; # in D
NA

< 0

# in 
; "2:5# in D

< 0

# in 
; # in D

U= 0;K = 10

B = 1

> 0

# in 
; # in D
NA NA

< 0

# in 
; # in D

U= 10;K = 0

B = 1

< 0j
>0:4 > 0j
<0:3
# in 
; " in D

NA
< 0

# in 
; "5# in D

< 0

# in 
; "1# in D

U= 100;K = 100

B = 1

> 0

# in 
; # in D
NA

< 0

# in 
; "2:5#in D

< 0

# in 
; "6#in D

U= 0; 10; 100;

K = 0; 10

U= 100; K = 100

B = 2

< 0j
>0:7 > 0j
<0:6
# in 
; # in D

NA NA NA

U= 0; 10; K = 100

B = 2

< 0j
>0:05 > 0j
<0:05
# in 
; " in D

NA NA NA

U= 0; 10; 100�

K = 0; 10; 100

B = 5

< 0j
>0:3 > 0j
<0:2
# in 
; # in D

NA NA NA
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Table 4a: Effect of tax on welfare (a = 1)

@E(W )
@


; a = 1
Rogerson

p = 10

LiC:&Sp:

p = 10

Gamma

p = 10

Gamma

p = 100

U= 0; 10; 100

K = 0; 10; 100

B = 1; 2; 5

> 0

" in 
; # in D

> 0

" in 
; # in D

< 0

#in 
; # in D

< 0

#in 
; # in D

Exceptions

U= 0;K = 10

B = 1

< 0jD<4:5 ; > 0D>5:5
" in 
; "# in DjD<4:5;W1

" in 
; # in DjD>5:5;W1

" in 
; " in DjD<4:5;W2

" in 
; # in DjD>5:5;W2

NA NA NA

U= 0;K = 10

B = 2

> 0

" in 
; # in DjW1

#3" in 
; #4" in DjW2

NA NA NA

U= 0; 10;K = 100

B = 1; 2

< 0

#in 
; " in D
NA NA NA

U= 100;K = 0; 10

B = 1
NA NA

> 0

"in 
; # in D
NA

U= 100;K = 0; 10

B = 5
NA NA NA

> 0jD<5 ; < 0jD>5
#in 
; # in D
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Table 4b: Effect of tax on welfare (a = 10)

@E(W )
@


; a = 10
Rogerson

p = 10

LiC:&Sp:

p = 10

Gamma

p = 10

Gamma

p = 100

U= 0; 10; 100�

K = 0; 10; 100

B = 2

> 0

" in 
; # in D

> 0

" in 
; # in D

> 0

" in 


sl # in DjW1

sl " in DjW2

< 0

# in 
; # in D

U= 0; 10; 100�

K = 0; 10; 100

B = 1

NA NA
< 0

# in 
; # in D

< 0

# in 
; # in D

U= 0; 10; 100�

K = 0; 10; 100

B = 5

NA NA
> 0

" in 
;�! in D

> 0

" in 
;�! in D

Exceptions

U= 0;K = 10; 100

B = 2
NA NA

< 0

# in 
; # in D
NA

U= 0; 10;K = 100

B = 1

< 0

# in 
; " in D
NA NA NA

U= 10;K = 100

B = 2
NA NA NA

< 0jD<6 ; > 0jD>6
# in 
; # in D

U= 10;K = 0

B = 1
NA NA

< 0jD> 5
2
; > 0jD< 5

2

# 
jD> 5
2
; # 
jD< 5

2

# in D

NA

U= 100;K = 0; 10

B = 1
NA NA

> 0

" in 
; # in D
NA
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Table 5: Effect of tax on welfare in case of competitive markets (a = 10)

@E(W )
@


; a = 10
Rogerson

p = 10

LiC:&Sp:

p = 10

Gamma

p = 10

Gamma

p = 100

U= 0; 10; 100�

K = 0; 10; 100

B = 1; 2; 5

> 0

" in 
; # in D

> 0

" in 
; # in D

> 0

" in 
; # in D

> 0

" in 
; # in D

U= 0

K = 0

B = 1

U= 10

K = 10

B = 1

U= 100

K = 100

B = 1

NA NA
> 0

" in 
; #6" in D

> 0

" in 


#6" in D

U= 0;K = 10

B = 1
NA NA

> 0

" in 
; #1" in D

> 0

" in 
; " in D


