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Abstract

We design and estimate a game theoretic congestion pricing mecha-
nism in which the regulator aims at reducing urban tra¢ c congestion by
price discriminating travelers according to their Value Of Time (VOT).
Travelers�preferences depend on their observable characteristics, on the
endogenous amount of congestion anticipated, on their Marginal Utility
(MU) of income and on some unobserved factors. Using a French house-
hold survey, we estimate the demand models to simulate di¤erent pricing
mechanisms. We �nd that unobserved determinants of transportation de-
mand are signi�cant and are used to measure the anticipated time spent
in tra¢ c and the comfort of traveling: diverging from these expectations
is felt as more discomfort than if no expectations were formed a-priori.
However some of this discomfort is derived from travelers�marginal utility
of income: the lost time in tra¢ c is clearly "unpleasant" because of its
opportunity cost. When the regulator and the transportation provider
share common objectives, we show that a great welfare improvement can
be achieved when implementing a homogenous pricing that accurately
accounts for travelers VOT.
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1 Introduction

The predominant form of urban congestion pricing in Europe is �at rate pric-
ing. For example, car travelers driving in Central London on weekdays between
7:00am and 6:30pm were required to pay 5 pounds, increasing to 8 pounds since
2005 (see also Mannheim, Oslo or Bergen, for similar experiments). This simple
pricing scheme was chosen because it was relatively fast and easy to implement.
The experiment has been successful in many ways, however, there are still con-
cerns regarding the optimal price and/or price structure. In particular, once
travelers pay the fee, they have no incentive to minimize driving. In this con-
text, a variable road use fee that would re�ect the heterogeneity of drivers, such
as the type of vehicle, time and frequency would seem more appropriate. This
approach would most accurately re�ect the external social costs imposed by
driving and would give travelers an incentive to minimize their negative impact
by stimulating them to make choices that maximize both their own utility and
society�s.
A core issue of concern to urban network users, transportation operators and

economists is the constantly changing network conditions arising from aggregate
decisions and behavior. The literature on road networks (initiated by Beckmann
et al., 1956 and extended by Dafermos, 1973 to heterogenous travelers) and on
second best optimal pricing (see Gmez-Ibez and Small, 1994; Arnott et al., 1994,
1998; Emmerinck, 1998; Parry and Small, 2005) is based upon the assumption
that congestion is stochastic. In these studies, congestion is usually modeled by
a function of time and tra¢ c �ow, where congestion externalities are represented
by a parameter to be estimated. Using this approach, the regulator is able to
control the tra¢ c �ow using time varying congestion tolls. We argue that the
network behavior depends on the aggregate load of the network - the result of
many users�decisions on how to use the network. In this sense, it is important
that the regulator is able to control the incentives of the travelers. Since ur-
ban congestion is caused by too many travelers competing for a limited road
space, our objective is to �nd an economically e¢ cient way to allocate network
resources among travelers. Former studies show that incomplete information
about travelers Value Of Time (VOT) or aversion to congestion is signi�cant
and that urban travelers are willing to pay a non-negligible amount of money to
improve their tra¢ c conditions. However, this goal requires that we know the
true value that each traveler places on travelling.
We estimate a game theoretic demand model using a household survey made

in the city of Montpellier (France) that can reproduce the Bayesian game that
travelers play to decide upon the number of trips they make and the resulting
aggregation that forms congestion. Viauroux (2007) uses this approach, derives
the average willingness of travelers to pay on the network and derives some
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measures of welfare. However, this analysis di¤ers by the following two points.
1- Her analysis did not account for travelers�unobserved characteristics or

the unobserved attributes of the varying modes of transportation. Reputation,
for example, may be perceived as useful information regarding the comfort or
accessibility of a mode and this might a¤ect the traveler�s willingness to pay as
well as reduce the regulator�s ability to create the right incentives.
2- Travelers sensitivity to transportation costs is assumed here to vary with

income and tra¢ c conditions.
Indeed, Figures 1a-b (Appendix 3) summarize statistics on the number of car

and bus trips by income range.1 They show that car traveling is a normal good
(or service) up to an income range between 2439 Euros and 2897 Euros while
bus traveling is an inferior good up to an income range of (3,354;3,811] and a
normal good thereafter. Our hypothesis is that the bus is cheaper in Montpellier
for low income individuals such as the unemployed, students, and retired (see
details on bus fares in data section) whose MU of income is high. As their
income increases and their marginal utility of income decreases, the comfort of
traveling by car outweighs its cost to a greater extent. After a certain income
level, however, external factors such as tra¢ c conditions reverse the e¤ect of
the MU of income in favor of more bus trips. More speci�cally, we will consider
three scenarios: a- the MU of income is assumed constant; b- the MU of income
is a linear function of the observed income range; c- the MU of income is a
function of the travelers�VOT (see also Viauroux, 2008).
3- We investigate the link between travelers�heterogeneity and the welfare

it generates (see also Small, 1992; Small and Yan, 2001). We derive a pricing
mechanism aimed at reducing congestion on the network by promoting the use
of public transportation. The derivation distinguishes di¤erent weights that
the regulator might place on travelers�surplus to account for di¤erent market
structures: the regulator may, for example, place more weight on the public
transportation provider�s pro�t than on travelers�surplus. This approach is close
to McKie-Mason and Varian who in 1995 proposed a "smart market" mechanism
that suggests an auction-based scheme to price internet congestion. Indeed, the
urban European city network is similar, in many ways, to the internet network.
The street network in the core areas that concentrates most activities (work,
school, leisure and shopping) is rarely expanded.
We show that the regulator�s policy will primarily target individuals who

are less sensitive to transportation costs and whose probability of generating
congestion is large. Intuitively, if the marginal cost of a trip is small, the fare is
such that, if most individuals travel more than you (because their VOT is lower
than yours), you should be assigned a lower fare as you are not held responsible

1 Income is de�ned as the gross monthly income of the household, including the professional
income of all members of the household including premiums such as a thirteen month, yield
premium as well as other real estate income. For con�dentiality reasons, the household head
was asked to give only a range of income. Despite this precautionary survey measure, 30%
of household heads refused to answer. In this case, we replaced missing values of income by
its prediction: observed income has been regressed on variables characterizing the individual,
such as age, sex and professional status (executive, farmer, retired, and factory worker).
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for as much tra¢ c congestion. Moreover, this fare is lower when the traveler�s
income is low (or sensitivity to cost is high). Hence, the fee increases with the
likelihood of frequent travel that creates congestion and decreases with income.
In this case, the regulator�s intervention is primarily intended for individuals
who are less sensitive to transportation costs and whose probability of generating
congestion is large. However, as the marginal cost of a trip increases, more and
more travelers will contribute to the �nance of the capital/infrastructure by an
amount that is lower for lower income travelers.
To the best of our knowledge, this is the �rst paper to derive and estimate a

congestion pricing mechanism that accounts for the endogeneity of congestion
using travelers�anticipations of tra¢ c as well as the unobserved determinants
of travelers�decisions and di¤erent levels of heterogeneity in the MU of income.
Estimation results show that reputation or other unobserved determinants of

transportation demand (hereafter referred to as reputation)2 , a¤ect signi�cantly
the joint traveling choices on the network. Reputation seems to be perceived as
a reference measure of anticipated time spent and comfort of traveling. Hence,
diverging from these expectations is felt as more discomfort than if no expec-
tations were formed a-priori. While reputation signi�cantly a¤ects the choice
of modes of transportation, it only signi�cantly a¤ects the use of public trans-
portation during peak hours. Hence, for a given infrastructure, we �nd that the
use of public transportation may increase if some improvements in reliability
and comfort were made. Interestingly, reputation seems to have signi�cantly
more impact during o¤-peak times when travelers�choices are less constrained.
Moreover, travelers are also more sensitive to tra¢ c conditions during o¤-peak
hours: during these times, the opportunity cost of traveling is felt to a greater
extent because of the foregone leisure or shopping activities. It is also impor-
tant to note that some of the nuisance coming from unexpected circumstances
of traveling comes from the marginal utility of income: the lost time in tra¢ c
is clearly "unpleasant" because of its opportunity cost. In other words, when
the heterogeneity in the MU of income is accounted for, tolerance to unforeseen
events on the network increases.
Marginal cost pricing accounting for reputation of modes and observed het-

erogeneity of travelers�sensitivity to price (Model 2) generates a welfare gain
relative to the pricing scheme designed in Viauroux (2007) of about 12%. When
regulator and transportation provider share common objectives, our results
show that welfare can be reduced when too much heterogeneity is accounted
for. However, a great welfare improvement can be achieved by implementing a
homogenous pricing mechanism that accurately accounts for travelers�VOT.
The paper is organized as follows. Section 2 presents theoretical model of

transportation demand. Section 3 presents the data set as well as the estimation
procedure, the parametrization of the model and discusses the identi�cation of
the model. Section 4 derives the optimal pricing policies in the case of complete
and incomplete information about each traveler�s aversion to tra¢ c congestion.

2We assume that reputation of a mode represents the major unobserved determinant of
transportation demand. We do so to ease the exposition of the intuitions and inferences of
our results.
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Estimation and simulation results are reported and analyzed in Section 5. Sec-
tion 6 concludes.

2 The Model

Individuals�decisions to travel result from a Bayesian game in which travelers
possess private information about their value of time (VOT) or �type�. 3

We consider the Bayesian game (Harsányi, 1967�68)

� = (I;Q;�; (pi)i2I ; (ui;t)i2I;t2T );

where I is the set of individuals i traveling in the city (i = 1; :::I); Q is the
set of possible number of car and bus trips performed with fare type of j (j =
1; :::J) during period t (t = 1; :::T ) by individual i; denoted by qi;t = (qci;t; q

bj
i;t);

� = �i � ��i is the set of travelers� types � = (�i; ��i) representing their
tolerance to tra¢ c congestion or the value that they associate to the time lost
in tra¢ c (VOT), where ��i := �

k2I�i
�k . Hence, a low tolerance for congestion

corresponds to a high VOT.
We let �i index individual i type (for i = 1; : : : ; I) and ��i index the type

of travelers other than i. �i 2 �i = [�i; �i] where �i > 0 is a taste parameter
indexing the least tolerance for congestion (greatest VOT), while �i represents
the greatest tolerance for congestion (lowest VOT). The regulator belief about
�i is re�ected in the joint density fi(�i) and its cumulative distribution function
Fi(�i) is assumed to be continuous with support � � ]0; 1] for i = 1; ::; I. We de-
note by pi (:j�i) the probability distribution over ��i and by � the randomized-
strategy pro�le for the game, such that � = (�i (qi;tj�i))i2I;qi;t2Qi;t;�i2� :

Travelers�preferences depend upon the number of trips taken and upon the
choice (and perception) of a mode of transportation: the traveler can either
walk to his destinations, i.e. use neither the car nor the bus; he can use the
car at least once but not the bus; use the bus at least once but not the car.
The choice of each of these modes is a¤ected by an unobserved factor, re�ecting
their reputation, and these factors will also a¤ect transportation usage.
Travelers�preferences depend on the anticipated level of congestion, which

in turn is determined by the (past) decisions of all other individuals. Travelers
decide on the number of trips to take with a particular mode of transportation.
They consider both car and public transportation use, hereafter referred to as
"bus", which are both a¤ected by the inconvenience of tra¢ c congestion created,
mostly, by cars. We assume that all roads leading to a central business district
are congested but that the level of congestion varies; hence the selection is made

3Given his type, a traveler determines the optimal probability distribution of use for each
relevant mode of transportation and chooses the number of trips he wants to make for a given
period of time. For example, if his value of time is low, he may lower his number of car trips
and increase his probability of using an alternative mode of transportation, such as the bus.
Note, that his best probability distribution depends on the probability of all other travelers
(of di¤erent possible types) taking trips.
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across modes of transportation that could involve more traveling time (such as
the bus for example). This assumption is in line with pricing experiments such
as Singapore, London or Mannheim, for example, where the optimal regulatory
policy was applied to an entire congested district.
Individuals�preferences for traveling are a¤ected by their perception of the

associated mode of transportation as well as the choice of consuming other goods
in quantity �i;t. We also assume that there exists unobserved factors relevant
to the decision of the individual toward one mode of transportation that will
impact the number of trips taken and the quantity �i;t of other goods consumed.
We assume that these unobserved factors alter preferences in the same way as
the quality of the mode, the aversion to tra¢ c congestion and the amount of
tra¢ c on the network. We use the random utility approach from Manski (1977)
and de�ne the traveler unconditional utility function as a variation (ui;t)i2I
of the functions introduced by Blackburn in 1970 and Hanemann in 1984 for
j = 1; :::J;

Ui;t = Ui;t(qi;t; q
�
�i;t;  i;t; �i;t; �i; "i;t)

= �cqci;t[1 +  
c
i;t + ln �i � ln s�i;t � ln qci;t + "ci;t]

+�b
JX
j=1

qbji;t

h
1 +  bi;t + ln �i � ln s�i;t � ln q

bj
i;t + "

bj
i;t

i
+�wqwi;t[1 + ln �i � ln s�i;t � ln qwi;t + "wi;t] (1)

+hi�i;t

where qi;t �
�
qci;t; q

b1
i;t; :::; q

bJ
i;t ; q

w
�
; s�i;t = s�i

�
qc�i;t

�
is a mapping of number

of car trips qc�i;t made by travelers other than i,  i;t �
�
 ci;t;

�
 bi;t

�
J�1

�
where

 ci;t (respectively  
b
i;t) denotes a measure of observed comfort of traveling by

car (respectively by bus) for individual i. The letters �c; �b and �w represents
the marginal utility of using the car, the bus (or public transport) and the
alternative mode (typically walk or two-wheels).
We let hi(:) denote the marginal utility of income of individual i, which can

be seen as a rate of change between money and transportation preferences: a
1 euro spending gives the individual a change in utility equal to hi. When hi
is high, the individual is very sensitive to an increase in transportation fares.
Intuitively, this is the case of lower income individuals. On the contrary, a low
hi means that the individual is hardly sensitive to an increase in transportation
fares. Parameter(s) in function hi (:) as well as �c; �b are to be estimated.
We denote by "i;t �

�
"ci;t; "

b1
i;t; :::; "

bJ
i;t ; "

w
i;t

�
the unobserved factors associated

respectively to the choices of car, bus with each fare type j = 1; :::J . These
unobservables could be characteristics of the consumer and/or attributes of the
mode of transportation (and menu of payment options) such as its reputation.
Note that Ui;t(qi;t; q��i;t;  i;t; �i;t; �i; "i;t) is twice di¤erentiable in its argu-

ments and strictly quasi-concave in qp; �i;t and that the model satis�es the
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assumption of "weak complementarity" (see Maler, 1974) implying that the
characteristics of a mode of transportation do not matter unless the mode is
actually used.
The letter s�i denotes the level of inconvenience in tra¢ c met by traveler i.

We assume that it is represented by the average number of car trips made by
travelers di¤erent from i, given by4

s�i;t =
1

I � 1
X
j2I�i

Z
"cj;p

qcj;p
�
"cj;p
�
dF ("rj;p)

in case of complete information of the regulator on the travelers�VOT, and by

s�i;t =
1

I � 1
X
l2I�i

Z
�l

Z
"cl;p

qcl;p(�l; "
c
l;p)dF ("

c
l;p)dF�(�l)

in case of incomplete information. Note that this average number of trips over
all travelers of all types does include zeros, i.e. individuals who do not travel
by car.

Each traveler i faces the following budget constraint:

aci;t + p
c
i;tq

c
i;t +

JX
j=1

�
abi;t + p

bj
i;tq

bj
i;t

�
+ p��i;t �Wi (2)

where pci;t(resp. p
bj
i;t) denotes the payment to make one trip by car (respectively

the per-unit price of a bus trip for all fare categories j = 1; :::J), aci;t (resp.

abji;t) denote the �xed charge or subscription fee (if applicable) for car use (re-
spectively for bus use for any j = 1; :::J) and p� denotes the unit price of the
composite good �i;t that we normalize to 1 without loss of generality and Wi is
the individual�s income.
Suppose for the moment that individual i has decided to travel exclusively by

car. Conditional on his decision, his utility is U
c

i;t = U
c

i;t(q
c
i;t; q

�
�i;t;  

c

i;t; �i;t; �i; "i;t)

where qci;t �
�
qci;t; 0J�1

�
and by virtue of the assumption of weak complemen-

tarity  
c

i;t �
�
 ci;t; 0J�1

�
. His conditional direct utility function is

U
c

i;t = U
c

i;t(q
c
i;t; s�i;t;  

c

i;t; �i;t; �i; "i;t)

= �cqci;t[1 +  
c
i;t + ln �i � ln s�i;t � ln qci;t + "ci;t] + hi�i;t (3)

and the traveler maximizes U
c

i;t subject to the constraint

aci;t + p
c
i;tq

c
i;t + p��i;t �Wi (4)

and the non-negativity conditions qci;t � 0 and �i;t � 0:
4Congestion initiated by buses is assumed negligible.
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In the same way, if the traveler chooses to travel by bus only with fare type
j, his conditional utility function is, 8j;

U
bj

i;t = U
bj

i;t(q
bj
i;t; s�i;t;  

b

i;t; �i;t; �i; "i;t)

= �bqbji;t

h
1 +  bi;t + ln �i � ln s�i;t � ln q

bj
i;t + "

bj
i;t

i
+ hi�i;t (5)

where qbji;t �
�
qbji;t; 0J�1

�
,  

b

i;t �
�
 bi;t; 0J�1

�
and the traveler maximizes

U
bj

i;t subject to the constraint

abi;t + p
bj
i;tq

bj
i;t + p��i;t �Wi (6)

and the non-negativity conditions qbji;t � 0 and �i;t � 0:

Finally, if the traveler chooses to walk, his conditional utility function is

U
w

i;t = U
w

i;t(eqwi;t; s�i;t; �i;t; �i; "i;t)
= (1� �c � �b)qwi;t

�
1 + ln �i � ln s�i;t � ln qwi;t + "wi;t

�
+ hi�i;t (7)

and the traveler maximizes U
w

i;t subject to the constraint

p��i;t �Wi (8)

and the non-negativity conditions qwi;t � 0 and �i;t � 0:

The resulting conditional ordinary demand functions will be denoted qci;t and

qbji;t: One can derive these functions as follows:

Proposition 1 Assume that "ci;t follows an Extreme Value distribution with
parameters (1,�1). Then, conditional on his/her choice m = c; b and fare type
j (when m = b), traveler i�s program of maximization of (3) subject to (4)
or (5) subject to (6) gives the following conditional demand functions for any
j = 1; :::J :

qci;t(�i;  
c
i;t; s

�
�i; "1i) =

�i
s��i;t

e 
c
i;t�

hip
c
i;t

�c +"ci;t ; (9)

qbji;t(�i;  
b
i;t; s

�
�i; "

j
2i) =

�i
s��i;t

e 
b
i;t�

hip
bj
i;t

�b
+"bji;t ; (10)

qwi;t(�i;  
b
i;t; s

�
�i; "

j
2i) =

�i
s��i;t

e"
w
i;t (11)

with

s��i;t :=

0@�
�
2� 1

�1

�
I

X
j2I

Z
�j2�

�je
 cj�

hjp
c
j;p

�c dF (�l)

1A1=2

(12)
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in the case of incomplete information and

�
s��i;t

�2
:=
�
�
2� 1

�1

�
I

X
j2I�i

�je
 cj�

hjp
c
j;p

�c (13)

in the case of complete information.

Proof. See Appendix 1.

The expression of the conditional indirect utility functions V
c

i;t, V
bj

i;t 8j =
1; :::; J and V

w

i;t are

V
c

i;t = V
j

i;t

�
aci;t; p

c
i;t; wi;  

c
i;t; �i; s

�
�i;t; "

c
i;t

�
= �c

�i
s��i;t

e 
c
i;t�

h(�i)p
c
i

�c +"ci;t + hi
�
wi � aci;t

�
; (14)

for j = 1; :::J;

V
bj

i;t = V
bj

i;t

�
abji;t; p

bj
i;t; wi;  

bj
i;t; �i; s

�
�i;t; "

bj
i;t

�
= �b

�i
s��i;t

e 
b
i;t�

h(�i)p
bj
i;t

�b
+"bji;t + hi(wi � abji;t); (15)

and

V
w

i;t = V
w

i;t

�
wi; �i; s

�
�i;t; "

c
i;t

�
= (1� �c � �b) �i

s��i;t
e"

w
i;t + hiwi: (16)

Note that the additive form of the direct utility function is such that maxi-
mization of the unconditional problem characterized by (1) and (2) would also
lead to following �rst order conditions

1 +  ci;t + ln �i � ln s��i;t � ln qc�i;t + "ci;t = 1 +
hip

c
i;t

�c
; (17)

1 +  bi;t + ln �i � ln s��i;t � ln q
bj�
i;t + "

bj
i;t = 1 +

hip
bj
i;t

�b
for j = 1; :::; J: (18)

and conditional demand functions (9) and (10).
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3 Empirical Study

3.1 Data

We use a household survey in the greater Montpellier area (south of France;
229,055 inhabitants) recording the transportation activity of 6341 individuals
during a two day period. Hence, we observe each individual�s number and
characteristics of trips as well as his (and his household�s) socioeconomic char-
acteristics. A trip is de�ned as a more-than-300-meters drive or run between
two places on a public road. We focus on trips made for the purposes of work,
school, shopping and leisure; return trips home are not accounted for.5 General
statistics on the number of car and bus trips are reported in Tables 4-1 and 4-2
of Appendix 2.
More speci�cally, each individual possesses J +2 mutually exclusive and ex-

haustive alternative choices for traveling: (1) the individual can travel neither
by car nor by bus (the trip could then be by bike or by walk or there could be
no trip at all), (2) the individual can travel by car only (with possible combined
walk and/or bike trips), (3) the individual can travel by bus only (with pos-
sible combined walk or bike trips). Furthermore we assume that the mode of
payment chosen is the one that is most used during the period, entailing each
traveler chooses only one type of payment. In the case where the individual
travels by bus, he can choose among J types of payment: more speci�cally,
these include a unit ticket (valid for one trip) of FF7 (1.07 Euros), a booklet of
3 tickets of FF20 (3.05 Euros) or a booklet of 10 tickets (discounted for handi-
capped or large families), a 7 day or 30 day lump sum (discounted for students,
unemployed, scholars depending on district subventions, retired with and with-
out "Carte Or"(retirement card) subscription) or a yearly pass (discounted for
scholars, students and unemployed non student-scholars). Hence, these payment
options do not depend on the time of travel but they depend on the observed
characteristics of the individual.

3.2 Model Estimation and Identi�cation

3.2.1 Estimation Procedure

In this paragraph, we de�ne by R the set of all possible choices of modes and
fare categories R �fc; (b; 1) ; (b; 2) ; :::; (b; J) ; wg . We denote by r, the typical
element, r = 1; :::J + 2: Using these notations, (1) can be written:

Ui;t =
J+2X
r=1

�rqri;t[1 +  
r
i;t + ln �i � ln s�i;t � ln qri;t + "ri;t] + h (�i) �i;t

Let us denote the unconditional demand functions for traveler i during period
t; qri;t(�i;  i;t; s

�
�i;t; "i;t) 8r and by Vi;t (�i) � Vi;t

�
ai;t; pi;t; wi;  i;t; �i; s

�
�i;t; "i;t

�
;

the associated unconditional indirect utility function. Let ai;t �
�
aci;t; a

b1
i;t; :::; a

bJ
i;t

�
5Please refer to Viauroux (2007) for a more detailed description of the data set.
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and pi;t �
�
pci;t; p

b1
i;t; :::; p

bJ
i;t

�
the possible �xed fees and per-trip unit price, of re-

spective typical element ari;t and pri;t. The discrete choice of which mode of
transportation to select can be represented by a set of binary valued indices
�ri;t = �ri;t

�
ai;t; pi;t; wi;  i;t; �i; s

�
�i;t; "i;t

�
; where

�ri;t = 1 if V
r

i;t (�i) > V
r0

i;t (�i) 8r0 6= r (19)

= 0 otherwise

The relationship between these unconditional functions and the correspond-
ing conditional ones above is that:

qri;t(�i;  i;t; s
�
�i;t; "i;t) = �ri;tq

r
i;t(�i;  

r
i;t; s

�
�i;t; "i;t) (20)

and
Vi;t = max

V
r
i;t

(V
1

i;t; V
2

i;t; :::; V
J+1

i;t ): (21)

Using the approach of Hanemann (1984), we can write the likelihood function
of the model as follows. Let r� denote the index for the mode of transportation
and type of payment selected by the ith individual, let qr�i;t be his observed
number of trips. Then,

L =
NY
i=1

�Z
�

fqr�i;t
�
qr�i;t (�i)

�
dFi(�i);

=

NY
i=1

�Z
�

fqr�i;tj"2Ar
i;t

�
qr�i;t (�i)

�
P ri;t (�i) dFi(�i):

where the expressions of fqr�i;tj"2Ar
i;t
and P ri;t (�i) are derived in Appendix 2.

3.2.2 Identi�cation

Identi�cation of the model above raises three main concerns that need to be
addressed. The �rst is the handling of the continuous/discrete choice model
structure, the second is the presence of a peer e¤ect a¤ecting the decision of
travelers and the third is the presence of incomplete information about the
traveler�s VOT.
Recall that our model can be summarized by (58), (59) and (60). Individual

valuations �i are i.i.d random draws from the Beta(1; �) distribution, where �
is a parameter to estimated, while the random components "ri;t are assumed in-
dependent and identically Gumbel distributed with parameters (0; �1): Hence,
�r"ri;t � G

�
0; �1�r

�
where �1 and �

c; �bj are to be estimated. We specify vectors
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 bi;t and  
c
i;t by  

b
i;t � �bXb

i;t; and  
c
i;t � �cXc

i;t where X
b
i;t and X

c
i;t are vec-

tors characterizing the trip based upon its origin and its destination as well as
socioeconomic characteristics of individual i (see Tables 1 and 2). We assume
that the MU of income can take three possible speci�cation forms. The MU can
be constant (Model 1),

hi = h0;

the MU of income can vary with the monthly household income (Model 2):

hi = hI0 if Inci �gInc1
= hI1if gInc1 � Inci <gInc2
= hI2 if Inci >gInc2

where gInc1(1500FF or '229 euros) and gInc2 (2883FF or '440 euros) are
dividing the monthly income data in three equal shares and hI0; h

I
2 and h

I
2 are

parameters to be estimated (Petrin, 2003).
Finally, the MU of income is a function of the individual�s VOT (Model 3):

hi = h�0 (�i)
0:5

where h�0 is a parameter to be estimated. Note that Model 3 is a special case
of the more general functional form hi = k3�

�
i , which veri�es the assumptions of

both propositions below for 0 < � < 1. This speci�cation of the MU of income
as a function of the unobserved VOT is based on the assumption that the more
tolerant to tra¢ c congestion, the more an individual uses transportation despite
tra¢ c conditions and the higher the marginal utility of transportation usage (as
we expect h�0 to be estimated to be positive), however this e¤ect wears out above
a threshold of tolerence. Hence, we assume that high income travelers have, on
average, a higher VOT than low income travelers. This is consistent with the
literature stating that the MU of income decreases with income (see Frisch, 1964
and Clark, 1973 for the construction of empirical measures of MU of income in
transportation).
First, let us analyze the complete information case (�i known 8i) and let us

assume s�i is exogenous.
The most general approach of identi�cation of discrete continuous models

has been undertaken by Newey (2007) who shows that identi�cation of both
demand funtions and nonparametric indirect utility functions of the Dubin and
McFadden (1984) model rely solely on the support of the choice probabilites
conditional on the choice index and on the independence between the choice
index, the random error term and the exogenous prices and income measures.
This is possible because the structure of the model reduces the curse of dimen-
sionality. His approach is borrowed from the identi�cation strategies of sample
selection models (Heckman, 1979) and consists in identifying the choice proba-
bilities as a �rst step and the conditional means given each choice as a second
step, where the choice probabilities enter as regressors (see also Ahn and Pow-
ell, 1993 and Gayle and Viauroux, 2007 for further adaptations of this approach
when developing semiparametric estimators).

12



When "ri;t is close to its mean, our framework enters Newey�s (2007) linear
index T form where

T � �r + �r ri;t � hipri;t + �r"ri;t + hi
�
wi � ari;t

� s��i
�i

Provided that �r"ri;t � G
�
0; �1�r

�
; �r"ri;t��r

0
"r

0

i;t is strictly monotonic and logis-
tically distributed. Noting that the derivative of T with respect to pri;t and a

r
i;t

is monotically decreasing provided that hi > 0, the di¤erence �ri;t (�i)��r
0

i;t (�i)
or the non-random component of the indirect utility function, as well as their
derivatives with respect to pri;t and Wi are identi�ed. From this stage, Newey
(2007) shows that demand functions as well as indirect utility functions are iden-
ti�ed using the quantile structural function in the selected sample (see Imbens
and Newey, 2007).
The identi�cation result above, however, relies on the assumption that all

variables introduced in the model are exogenous. One possible concern in our
model is the presence of the externality term s�i , which is a function of other
variables in the model. Brock and Durlauf (2001) derive conditions for global
identi�cation of parameters in a binary random utility choice framework where
social interactions are accounted for. They show that the percentage change in
individual utility (assumed constant) from a change in the mean decision level
s�i is identi�ed while the same percentage in the linear-in-means framework of
Manski (1993) is not. This is because the relationship between the expected
average neighborhood choice in a binary choice model and the regressors which
characterize the causal determinants of individual behavior is su¢ ciently non-
linear to justify variation in the neighborhood characteristics. Our model di¤ers
from theirs because of its discrete/continuous nature. In our case, the percent-
age change in individual utility from a change in the mean decision level s�i
would depend on the frequency of use of the transportation mode. We do not
estimate this percentage change as s�i does not vary much across individuals
due to the large number of travelers in the city. Note however that s�i enters
nonlineary both in the utility and demand functions.
In general, there is no global identi�cation proof of discrete/continuous mod-

els with both peer e¤ects and incomplete information. Existence however, has
been established numerically in computational analysis (see Epple and Sieg,
1999, Calabrese et al., 2001, or Epple et al., 2006). Epple and Sieg (1999) es-
timate the general equilibrium distribution of households across communities,
using a framework that accounts for households�private information on their
valuation for the public good. Epple et al. (2006) undertake a general equilib-
rium approach to study the market for higher education. Each student chooses
among a subset of colleges which di¤er in their quality according to a mean
ability and a mean income of the student body while the students�preferences
depend on their own ability, income and college quality. For each student, ability
and income are observed. Calabrese et al. (2001) study voting decisions in local
communities when neighborhood quality depends on a peer e¤ect. Households
choose among communities that di¤er in their amount of public good quality and
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their prices (including taxes). Public good quality is endogenous and depends
on an externality term: the mean income in the community. Household prefer-
ences for neighborhoods depend on their own valuation of public good quality
as well as the mean income in the neighborhood. Conditional on neighborhood
choice, each household chooses an amount of housing and of composite private
good that maximize their utility. Thus, our approach is closest to Calabrese et
al. where preferences include both an incomplete information parameter and a
peer e¤ect. Our identi�cation strategy is similar to theirs as follows.
Let us assume that the J + 2 choices can be ordered according to their

quality and respective prices. Noting that the indirect utility functions satisfy

the standard single crossing property provided that �r > 0 i.e.
@V

r
i;t

@qri;t@�i
� 0;

indi¤erence curves in the (q; p) plane have slopes increasing in �i: Then, we
can identify J + 1 points of the distribution of �i and identify the mean of the
distribution of the incomplete information parameter 1

1+� :
For each individual, we observe the number of trips made during period

t; the variables measuring the comfort of each mode of transportation Xr
i;t;

unit prices and subcription fees (Recall that these prices and fees vary on an
individual basis). We also observe the household income. Using the known
information on the distribution of �i above, the variation in the conditional
demand functions due to the variation in the observed individual variables above
allows us to identify the vector of parameters �b; �c;as well as parametersh0�c or
h0
�b
;
hI0
�c ;

hI1
�c ,

hI2
�c ;

hI0
�b
;
hI1
�b
,h

I
2

�b
: Hence, at this stage, we are only able to identify the

di¤erence in marginal utility �c � �b: Moreover observation of each individual
choice of mode of transportation and type of payment allows us to identify �1

�c

and�1
�b
through the nonlinearity of the logit probability, hence identifying �c

and �b; h0; hI0; h
I
1 and h

I
2 using the previous stage results.

4 The mechanism

4.1 Introduction

In this section, we design a pricing mechanism that accounts for the endogeneity
of congestion, the reputation of the modes and the incomplete information the
regulator has about each traveler�s private VOT. Travelers�trips begin at one
node as shown in Figure 2 below and progress to a destination by traversing
the path between the intervening nodes. Their goal is to �nd the route from
the Origin node (O) to the Destination node (D), with lowest congestion and
distance between the intervening nodes. Hence, the least cost path is not neces-
sarily the shortest but rather the summation of the contiguous paths of lowest
congestion.

Figure 2: Concentric (city) network
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[Insert Figure 2 here]

The problem is that travelers choose a path that is consistent with their best
interest without regard for the interest of others traveling the network. The
regulator ("principal") works closely with the public transportation provider to
implement a mechanism that produces a Pareto optimal distribution of tra¢ c in
equilibrium. In the following, we focus exclusively on policies aimed at reducing
congestion on the city network by promoting the use of public transportation.
Travelers must pay a price (congestion fee) which depend on the amount of
congestion anticipated on the network, hence the period (peak/o¤-peak) they
travel; the fee is calculated based on the Vickrey-Clarke-Groves Mechanism (see
Vickrey, 1961; Clarke, 1971; Groves, 1973).
Implementing a pricing mechanism entails the regulator to allow each trav-

eler to select a fare (matched to a number of trips) for each mode of trans-
portation regulated. For car trips, they select (qci;t; a

c
i;t), while for bus trips they

select (qbji;t; a
bj
i;t) 8j: The quantity of trips is de�ned as the number of trips from

one origin to one destination within a two day period. The regulator will then
set the associated fares (pci;t; a

c
i;t) and (p

bj
i;t; a

bj
i;t) as a function of the individual�s

valuation of traveling. The regulatory policy must satisfy the constraint that
the traveler should have an incentive to truthfully report his type. Note that
the feasibility of this instrument is not obvious but one step in that direction
might be for the regulator to require the purchase of an RFID (Radio Frequency
IDenti�cation) card as a prerequisite to using toll roads and to link the traveler�s
identi�cation to his/her observed characteristics. The traveler could then pur-
chase a speci�c number of trips and choose a maximum amount of spending for
the period. For each possible set of observable characteristics, the regulator has
some information for �i prior to any valuation report from the traveler, which
is common knowledge to the �rm and all other travelers than i. Recall that
the regulator�s belief about �i is re�ected in the density fi(�i) and a cumulative
distribution function Fi(�i): The regulator also has a priori information on the
distribution associated to the traveler�s perception of each mode of transporta-
tion. He knows that "ri;t are identically distributed according to a distribution
function F". In the section below, we assume that the marginal utility of income
varies with travelers�VOT.
We describe a regulatory policy by the functions (pi;t; qi;t; ai;t) which can be

interpreted as follows. For any e�i 2 [�i; �i]; the regulator proposes a subscription
fee of ai;t and a unit price per trip pi;t

�e�i�; qi;t is the corresponding vector of
quantity of trips satisfying pi;t = P

�
qi;t

�e�i; "i;t�� where P �qi;t �e�i; "i;t�� are
the individual inverse demand curves resulting from the Bayesian game among
travelers de�ned above. We further assume that each individual chooses one
mode of transportation only during the two-day survey period.
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Inverse demand functions for transportation usage are obtained from Section
2 above:

pri;t
�
qri;t; "

r
i;t

�
=

�r

h (�i)

�
 ri;t + ln �i � ln s��i;t � ln qri;t + "ri;t

�
;

We assume that the functions pri;t(q
r
i;t; s

�
�i;t; �i; "

r
i;t) 8r are common knowledge.

The net surplus for trips of each traveler, having chosen the mode of trans-
portation and the type of payment r is,

Si;t = Sri;t(q
r
i;t; s

�
�i;t; a

r
i;t; �i; "

r
i;t)

=

qri;tZ
0

P (eq) deq � pci;tqci;t � aci;t (22)

=
�r

h (�i)
qri;t[1 +  

r
i;t + ln �i � ln s��i;t � ln qri;t + "ri;t]� pri;tqri;t � ari;t

Note that in this case, it is implicitly assumed that Sr
0

i;t = 0 8r0 6= r:

Using the abbreviations a = (ai;t)i2I,p2P , � = (�i)i2I , q = (q1i;t; :::; q
r
i;t; :::q

J+1
i;t )i2I;t2T;,

the expected total surplus in period t is de�ned 8r as

S(q; a; �) :=

IX
i=1

J+1X
r=1

Z
"ri;t

Sri (q
r
i;t; s

�
�i;t; a

r
i;t; �i; "

r
i;t)dF ("

r
i;t) (23)

in the case of complete information and by

S(q; a) :=
IX
i=1

J+1X
r=1

Z
�i2�i

Z
"ri;t

Sri (q
r
i;t; s�i; a

r
i;t; �i; "

r
i;t)dFi(�i)dF ("

r
i;t) (24)

in the case of incomplete information. Note that for a given value of �; the
expected total surplus is:

S(q; a; �) :=
IX
i=1

J+1X
r=1

Z
"ri;t

Sri (q
r
i;t; s�i; a

r
i;t; �i; "

r
i;t)dF ("

r
i;t)

Furthermore, the pro�t of the transport authority in period t is given by the
formula

� = �(q; a)

=
IX
i=1

J+1X
r=1

Z
�i2�i

Z
"ri;t

�
ari;t (�) +

�
pri;t � crp

�
qri;t
�
�; "ri;t

��
dFi(�i)dF ("

r
i;t);

where crp denotes the marginal cost associated to choice r during period t. Fi-
nally, the total welfare in period t is given by the formula

W (q; �) := �(q; a) + S(q; a; �): (25)
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Observe that the total welfare does not depend on a. Given a welfare weight
�1 2 (0; 1) placed on travelers�surplus, in the case of complete information, the
social planner�s problem is to maximize the social value function

U(q; a; �) := �1S(q; a; �) + (1� �1)�(q; a) (26)

with respect to
qri;t = qri;t(�; "

r
i;t) and ari;t = ari;t(�) (27)

under the participation constraints

Sri;t(q
r
i;t; s

�
�i;t; a

r
i;t; �i; "

r
i;t) � 0 (28)

for every i choosing r. In the case of incomplete information the social planner�s
problem is to maximize the functionZ

�

U(q(�); a(�); �)f(�) d� (29)

under the participation constraints (28) and the incentive compatibility con-
straints;

Sri;t(q
r
i;t(�; "

r
i;t); s�i; a

r
i;t(�); �i) � Sri;t(q

r
i;t(
~�; "ri;t); s�i; ai;t(

~�); �i) 8�; ~� 2 �
(30)

for every i choosing r, where ~� di¤ers from � only in its i component: �l = ~�l for
every l 6= i. By the revelation principle, it su¢ ces to show that the truth telling
strategy is a dominant strategy in a direct revelation mechanism. Indeed, the
revelation principle states that a dominant strategy equilibrium of any Bayesian
game can be represented by an equilibrium in a direct revelation mechanism (see
Green and La¤ont, 1977; Myerson, 1979).
The timing of the regulation process is as follows: First, each traveler i learns

his type �i. Second, the regulator announces the regulatory policy. Finally, the
number of trips is taken by individuals and a new congestion level results from
this policy.

4.2 Complete information

As previously mentioned, we have to maximize the function (26) with respect
to the variables (27) under the constraints (28), creating the following result.

Proposition 2 The regulator implements marginal cost prices. The maximum
of the social value function is achieved by a unique solution (qri;t; a

r
i;t)i2I , given

by the following formulae:

qri;t = �i

0@�
�
2� 1

�1

�
I

X
j2I

�je
 cj�

h(�j)

�c pcj;p

1A�1=2

e 
r
j�

h(�j)

�r crp+"
r
i;t : (31)
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Let 0 < �1 < 1=2: Then

ai;t = ai;t(q
r
i;t)

=
�r

h(�i)
qri;t; (32)

S(q; a; �) = 0; (33)

W (q; �) = �(q; a); (34)

=
IX
i=1

Z
"ri;t

�r

h(�i)
qri;t
�
�; "ri;t

�
dF ("ri;t);

U(q; a; �) = (1� �1)�(q; a): (35)

Let 12 < �1 < 1: Then,

ai;t = 0; (36)

W (q; �) = S(q; a; �); (37)

=
IX
i=1

J+1X
r=1

Z
"ri;t

qri;t

�
�r

h(�i)
[1 +  ri;t + ln �i � ln s��i;t � ln qri;t + "ri;t]� pri;t

�
dF ("ri;t);

�(q; a) = 0; (38)

U(q; a; �) = �1W (q; �): (39)

Proof. See Appendix 1.

If the regulator had complete information about each individual�s VOT, the
optimal policy would be to set a unit price per trip equal to the marginal cost and
leave travelers a surplus (if �1 > 1

2 ) or charge them a subscription fee (if �1 <
1
2 )

equal to the exact amount that they are willing to spend on transportation.
In case of �1 = 1=2; the social value function does not depend any more

on ai;t; otherwise, its maximum is attained for the same values of qri;t as in
Proposition 1.
Of course, this policy is not feasible for the regulator when � is unknown be-

cause it does not satisfy the incentive compatibility constraints. Each traveler
would have positive incentives to misrepresent his/her aversion to congestion
by reporting a valuation for transportation e� 6= �. Furthermore, this misrep-
resentation could take two possible directions. Intuitively, the traveler is likely
to report e� > � if he primarily uses public transportation because it does not
generate congestion or if he anticipates that the reduction in fare he may get
for traveling more overcomes his anticipated charge for creating congestion. In
this case, the traveler tries to take advantage of lower fares for making more
trips. On the other hand, one may expect e� < � if the individual travels mostly
by car; that is, the individual knows that the portion of the road he uses or the
time of the day during which he travels is highly congested and he anticipates
being charged a high amount for the inconvenience that his trips may cause on
the network.
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4.3 Incomplete information

In this section, we analyze the case where the regulator has incomplete informa-
tion about the traveler�s VOT. The expectation of a regulatory policy on urban
congestion is the following: by raising the price above the marginal cost, the
mechanism reduces the number of trips made by high valuation travelers. This
in turn will decrease the level of congestion on the network, and will increase
the incentive to make a trip.
We recall from Section 2 that the regulator maximizes the function (29) with

respect to the functions (27) under the participation constraints (28) and the
incentive compatibility constraints (30).
We will use the envelope theorem to maximize the social value function.

Hence, a traveler�surplus will be maximized when he/she reveals his/her true
type.6

Recall that the types �i 2 � are independently distributed according to the
cumulative distribution function Fi of density fi. We set � =

Q
i2I �i and

f =
Q
i2I fi. Furthermore, we assume that h is continuously di¤erentiable,

satisfying

1 +
1� 2�1
1� �1

� 1� Fi(�i)
fi(�i)

� h
0(�i)

h(�i)
6= 0 (40)

for all all i and �i.
In order to state our result, let us introduce the following notation:

s� :=

0@�
�
2� 1

�1

�
I

X
j2I

Z
�j

�je
 cj�

hj
�c c

c
j;p(�j)+"

c
i;tfj(�j) d�j

1A1=2

;

m(�i) :=

�
1 +

1� 2�1
1� �1

� 1� Fi(�i)
fi(�i)

� h
0(�i)

h(�i)

��1
;

cri1(�i) := m(�i)

�
crp +

�r

h(�i)
� 1� 2�1
1� �1

� 1� Fi(�i)
�ifi(�i)

�
; (41)

Vi := Vi(qi;t(�; "
r
i;t); �i)

=
1

�ih(�i)
�rqri;t(�; "

r
i;t)

� �r h
0(�i)

h2(�i)
qri;t(�; "i;t)[1 +  

r
i;t + ln �i � ln s��i;t � ln qri;t(�; "ri;t) + "ri;t]:

We assume that s�, as de�ned above is �nite.
The solution of the social planner�s problem is di¤erent again for �1 < 1=2

and for �1 > 1=2. Let us begin with the �rst case:

6From the envelope theorem, the derivative of the social value function with respect to �
takes into account only the direct e¤ect of �; and not the indirect e¤ect stemming from the
adjustment in quantity.
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Proposition 3 Assume that

�r
�

1

�ih(�i)
� h0(�i)

h2(�i)

�
� h0(�i)

h(�i)
cri1(�i; "

r
i;t) � 0 (42)

for all i choosing r and �i. If 0 < �1 < 1=2, then the regulator implement prices
cri1 and the maximum of the social value function is achieved by a unique vector
(qri;t(�; "

r
i;t); ai;t(�; "

r
i;t))i2I;t2T , given by the following formulae for all i; r 2 I

�R and � 2 �:

qri;t(�; "
r
i;t) =

�i
s��i;t

e 
r
i;t�

h(�i)

�r cri1(�i)+"
r
i;t ; (43)

ai;t(�; "
r
i;t) =

�r

h(�i)
qri;t(�; "

r
i;t)�

Z �i

�i

Vi(qi;t(��i; ~�i); ~�i) d~�i: (44)

Proof. See Appendix 1.
To understand why this regulatory policy may be optimal, observe that the

regulator wants to encourage the traveler to admit that he has a high traveling
valuation whenever this is true, so that pricing accounts for the congestion costs
generated. To prevent a traveler from misrepresenting his true valuation, the
regulator punishes him when reporting a low valuation. This punishment takes
the form of a per-trip price higher than the marginal cost of a trip.
In this case, the regulator assigns slightly more weight to the transportation

provider�s surplus that to the travelers, i. e. 1�2�11��1 > 0:

First, let us note that P � = fi(�i)
1�Fi(�i) represents the proportion of individuals

of VOT �i among those whose VOT is lower than individual i�s, while h0

h can
be seen as a measure of "acceleration" in the sensitivity to transportation costs.
The pricing is a linear function of the MC of using the mode of transportation

where the slope increases with P � , the intercept decreases with P �, while both
slope and intercept decrease with h0

h .
Intuitively, if the marginal cost of a trip is small, the fare is such that "if

most individuals travel more than you (because their VOT is lower than yours),
you should be assigned a lower fare as you are not held responsible for much
tra¢ c congestion". Moreover, this fare is lower when the traveler�s income is low
(or sensitivity to cost is high) and when his sensitivity to prices increases with
�i; i.e. when tra¢ c conditions "accelerate" the sensitivity to transportation
costs. Hence, the fee increases with the likelihood of frequent travel that creates
congestion and decreases with income. In this case, the regulator�s intervention
is primarily intended for individuals who are less sensitive to transportation
costs and whose probability of generating congestion is large. Also note, that
the intercept shift is decreasing with the true valuation of the individual; in other
words, the more obligated the traveler is to his schedule, the less punishment
imposed.
However, as the marginal cost of a trip increases, the fee is increased for those

travelers in proportion P � as a contribution for the use of capital/infrastructure
and this fee is lower for lower income travelers whose price sensitivity increases
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with their use of the network. As a consequence, the less information the regu-
lator has about the individual�s MU of income, the lower the distortion to the
marginal cost.
Finally, the subscription fee is designed to o¤set the incentive, of a traveler

whose VOT is low (�i high), to report a lower type and incur lower punishment.
It is equal to the traveler�s willingness to pay for total transportation usage
minus the surplus that he gets by announcing any type that is lower than his
own. Hence, if the traveler�s aversion annoucement is high (�i is low), then
he pays the maximum subscription fee. But the higher �i, the smaller the
subscription fee that a traveler pays. Thus, the subscription fee is inversely
related to the traveler�s valuation report.
Turning to the case �1 > 1=2, let us add again the extra condition ai;t(�; "ri;t) �

0 for all i and �.

Proposition 4 Let 12 < �1 < 1. Then the maximum of the social value function
is achieved by a unique triple (qri;t(�; "

r
i;t); ai;t(�; "

r
i;t))i2I , given by the following

formulae for all i; r 2 I �R and � 2 �:

qri;t(�; "
r
i;t) =

�i
s�
e 

r
i;t�

h(�i)

�r cri1(�i)+"
r
i;t ; (45)

ai;t(�; "
r
i;t) = 0: (46)

Proof. See Appendix 1.

Finally, Vi(qi;t(�; "i;t); �i) simpli�es to

Vi(qi;t(�; "
r
i;t); �i) :=

1

�ih(�i)
�rqri;t(�; "

r
i;t);

so that (42) is redundant.
In this case, the regulator assigns slightly more weight to the travelers�sur-

plus than to the transportation provider�s, i. e. 1�2�11��1 < 0 : the idea is that the
regulator wants to reward travelers for announcing a high valuation instead of
punishing them for announcing a low one.
Intuitively, if the marginal cost of a trip is small, the fare is such that "if most

individuals say they travel more than you (because their VOT is reported lower
than yours), you should be less "subsidized" as you are not held responsible for
much tra¢ c congestion". Moreover, this subsidy is higher when the traveler�s
income is high (or the sensitivity to prices is low). Finally, since there is no
incentive for high valuation travelers to report a lower type, no �xed grant is
necessary. Note that the optimal level of congestion, although endogenous, does
not directly enter the regulator�s pricing policy.
As in the preceding case, when �1 = 1

2 ; conditions (56) simpli�es and gives
pri;t = crp; pro�t �p =

PI
i=1

PJ+1
r=1 a

r
i;t = 0 and by simpli�cation of (44) the

individual surplus becomes

Si(qi;t (�) ; s�i;t; ai;t; �i) =
1

h(�i)
�rqri;t(�; "

r
i;t): (47)
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Observe that the validity Proposition 4 depends on the speci�cation of trav-
elers�marginal utility of income.
Let us consider two special cases of the proposition. In the case of unobserv-

able heterogeneous marginal utility of income, where, for example, h(�i) = h�0�i,
then s� is �nite for all �1 and Proposition 4 applies. Indeed, the integrals can
only blow up for �i ! 0: In this case we have

m(�i) � k1�
2
i and crp +

�r

h�0�i

1� 2�1
1� �1

1� Fi(�i)
�ifi (�i)

� k2

�2i
;

so that cri1 remains bounded. Therefore, �i exp( 
r
i;t � (�r)

�1
h�ic

r
i1 (�i)) is

bounded and thus s��i;t is �nite.
On the contrary, in the case of constant marginal utility of income h(�i) = ki

we have m(�i) = 1 and the formulae of cri1(�i) simpli�es to

cri1(�i) := crp +
�r

h�0
� 1� 2�1
1� �1

� 1� Fi(�i)
�ifi(�i)

:

It follows from these formulae that

cri1(�i)

8><>:
tends to 1 if �1 < 1

2 ;

tends to a �nite value if �1 = 1
2 ;

tends to �1 if �1 > 1
2

and then that s� is �nite for �1 � 1=2 and in�nite for �1 > 1=2. Thus, Propo-
sition 4 does not apply in the latter case.

5 Results

Estimation results of the structural parameters are reported in Tables 1 and 2 of
Appendix 3. Below, we compare our results to the results of Viauroux (2007).7

As anticipated, we �nd that reputation signi�cantly a¤ects the joint traveling
choices of mode of transportation and categories of payment. Interestingly, the
estimated distribution associated to the reputation e¤ects varies signi�cantly
from peak to o¤-peak times. Reputation seems to have signi�cantly more impact
during o¤-peak times when travelers�choices are less constrained.
Once they have established the reputation of a mode of transportation, trav-

elers still value their time in tra¢ c (� signi�cant); in fact they value it more
(�). We observe a decrease in the average tolerance for tra¢ c congestion going
from 1

1:646 = 0:608 (Models 1 and 2) or
1

1:684 = 0:594 (Model 3) during peak
hours to 1

1:642 = 0:609; 1
1:638 = 0:610 or 1

1:572 = 0:636 (in Models 1, 2, and 3
respectively) during o¤-peak hours, and the di¤erence increases with the degree
of heterogeneity/uncertainty assumed in the speci�cation of the MU of income.

7Note that the random models introduced in this paper are structurally di¤erent from the
non-random model of Viauroux (2007), which explains the di¤erence in log-likelihood results.
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This may, in part, explained by the fact that tolerance to tra¢ c congestion is
correlated to the reputation of a mode.
Reputation seems to be perceived as a reference measure of anticipated time

spent and comfort of traveling. Hence, diverging from these expectations is felt
as more discomfort than no expectation at all. For example, if I know that it
takes twenty minutes to go from point A to point B and make all the arrange-
ments (in reference to departure and arrival time for example), the occurrence
of an accident on the highway delaying all tra¢ c will impact my preferences
for the mode to a greater extent than if I made more �exible arrangements be-
cause of the unknown amount of congestion expected. Moreover, travelers are
more sensitive to a change in their schedule during o¤-peak hours; during these
times, transportation opportunity cost is felt to a greater extent because of the
foregone leisure or shopping activities.
It is also important to note that some of this discomfort is due to the trav-

elers �marginal utility of income: the lost time in tra¢ c is clearly "unpleasant"
because of its opportunity cost; hence, when the heterogeneity in the MU of in-
come is accounted for, tolerance to unforeseen events on the network increases.
Unlike their tolerance to unexpected tra¢ c, travelers�sensitivity to a change

in transportation costs of a mode (such as an increase in fare or an increase in
gas prices) will not change as much when its reputation is established. The
non-random model (Viauroux, 2007) estimated the marginal utility of income
at 1:94 during peak period and 2:28 during the o¤-peak period while the MU
of income averages to 0.011, 0.012 and 0.019 (respectively in Models 1,2 and 3)
during peak hours and to 0.013, 0.013 and 0.026. Model 1 results are extracted
from Tables 1 and 2 Column 7; Model 2 values are obtained by computing the
average MU of income as follows

bh =chI0P0 +chI1P1 +chI2P2
with P0 � P

�
Inci �gInc1� ; P1 � P

�gInc1 � Inci <gInc2� and P2 � P (Inci >gInc2) are the observed proportions of individuals whose income are within the
range speci�ed8 ; Model 3 values are obtained using the estimated distribution
of �; dE (h) =ch�0� 1

1 + b�
�0:5

:

As for observed factors, we �nd that the introduction of reputation lowers
their e¤ect on traveling decisions, although these e¤ects remain signi�cant.
In particular, we still �nd that during peak hours, the unemployed, the

students and the elderly choose to travel more by bus and less by car than
their other socioeconomic status counterparts. This result is consistent with
their preferred access to lower bus fares, more speci�cally free rides for the
unemployed and various state subsidies for students and retired travelers.

8 In our model, these proportions are respectively P0=89.6%, P1=7.8% and P2=2.6% dur-
ing peak hours and P0=92.6%, P1=4.9% and P2=2.4% during o¤-peak hours.
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As expected, the distance and the anticipated time of travel in�uence both
the frequency of travel and the choice of the mode to a lesser extent during
o¤-peak hours. During these hours the time spent in tra¢ c remains a nuisance
to travelers (negative signs); it appears to be more of an issue when travel-
ing by car (with a coe¢ cient of -0.002) than when traveling by bus where it
becomes insigni�cant: "reading a book" can diminish the stress associated to
it. Furthermore, the signi�cance of this e¤ect decreases with the introduction
of unobserved heterogeneity in the MU of income (Model 3): here again, the
inconvenience is not as much the discomfort of "being stuck in tra¢ c" as much
as the opportunity cost of the time lost that counts.
Finally, we �nd that the longer the trip undertaken, the more comfortable

the use of a car is perceived, avoiding the multiple bus stops of a bus trip, and
this result is stronger when the car used has more horsepower. This last result
may be explained by an average strong positive correlation between power and
comfort. In contrast, time seems to be taken for granted during peak periods
once reputation is established (It is insigni�cant in the results from EER (07)).
The longer the duration of the trip, the more individuals travel during peak
times with a preference for the use of public transportation. During this time,
the stress generated by di¢ cult driving conditions on a longer trip outweighs the
inconvenience of crowded public transportation. Furthermore, a short distance
bus trip is preferred in general to a long distance car trip. These results are
emphasized by Table 3 where the t-tests show that both the duration of a
trip and the distance of a trip impact both the choice and usage of a mode of
transportation in a very di¤erent way during peak and o¤-peak times.
Tables 4-5 present di¤erent simulated pricing strategies (and the associated

welfare) as designed in Section 6, i.e. a pricing scheme that internalizes the
social costs that travelers impose on each other. For each period, estimated
parameters are used to compute the optimal individual functions presented in
Propositions 4 and 5. The average surplus is computed as the sum over all
individuals of the expected value (according to the distribution of unobservables
"ri;t and of �) of the individual surplus as de�ned by equations (53) and (57) in
Proposition 4 and equation (47) in Proposition 5. For con�dentiality reasons, we
arbitrarily set a value for the transportation operator�s marginal cost, namely
1.07 euros (FF7) for the unit cost of a car trip, 0.76 euros (FF5) for a bus trip;
slightly lower than the average cost of a trip made with the respective modes
of transportation. The current average price of car usage per trip (on average
2 euros) is equal to the price per kilometer multiplied by a distance from the
centroid of the Origin area to the centroid of the destination area. The price
varies according to the power of the vehicle and the type of fuel used.9

Tables 4-1, 4-2 present the simulated frequencies and welfare when the reg-
ulator weighting travelers�surplus and transportation providers�pro�t equally:
�1 = 1=2: In particular, we simulate the frequency of car and bus trips if travel-

9When the household possessed more than one car, the survey did not indicate which
car was used for the trip considered. Consequently, we assumed that the trips made by the
household head were with the most powerful car, trips made by the second household member
were made with the second most powerful car, and so on.
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ers�preferences were a¤ected by the reputation of all available modes of trans-
portation (namely car, bus and walk) assuming the current set of prices. For
presentation purposes, the number of trips based on current pricing will be de-

noted respectively by
�
qci;t
�cp

and
�
qbji;t

�cp
while the optimal number of trips are

denoted by
�
qci;t
�opt

and
�
qbji;t

�opt
respectively.

Results show that during peak hours, the introduction of "reputation" er-
rors lowers signi�cantly the estimated number of car trips compared to the
non-random case or compared to the current number of car trips taken; on the
other hand, the number of bus trips estimated becomes closer to the actual
number of bus trips taken, while the non-random model overestimates them
greatly. In other words, if reputation were to in�uence the frequency of travel-
ing with all modes, then during peak hours the number of car trips would be
signi�cantly lower than the one we observe while the number of bus trips would
be well estimated. During o¤-peak hours, reputation e¤ects would lead to an
underestimation of car trips and an overestimation of bus trips compared to the
non-random case.
These results lead to an important conclusion: while reputation signi�cantly

a¤ects the choice of modes of transportation and category of payments, it only
signi�cantly a¤ects the use of public transportation during peak hours. This
may be due to several reasons:
First, once individuals weighed the costs and bene�ts associated to a mode,

the use of that mode might be subject to other factors. For example, while pos-
itive reputation would tend to increase the use of public transportation during
o¤-peak hours, the infrastructure might be insu¢ cient to cover the variety of
leisure and shopping destinations during those times. Moreover, direct access
to the car in the garage as opposed to walking toward the next bus stop might
explain that travelers use their car slightly more despite tra¢ c conditions.
This conclusion also means that the use of public transportation could be

increased if conditions (for a given infrastructure) could be improved during
peak hours, for example through additional bus lanes or additional comfort and
security.
Should the regulator adopt marginal cost pricing, travelers�surplus would

increase by 11.7% and 12.1% compared to the non-random case, with a total
(peak and o¤-peak hours combined) in Models 1 and 2 of 113957 Euros and
114407 Euros respectively instead of 102013 Euros in the non-random case (see
Viauroux (2007), columns 5 and 6 of Table 6). Overall, accounting for reputation
e¤ect increases signi�cantly our measure of travelers�surplus. This is consistent
with the previous conclusion that reputation is felt as useful information, which
increases travelers�utility. However, under the assumption that the sensitivity
to transportation costs varies with tra¢ c condition, overall travelers� surplus
decreases.
Tables 5-1 and 5-2 present statistics of simulated heterogenous pricing and

welfare results when the regulator and the transportation provider share com-
mon objectives, i.e. �1 < 1=2: As an example, we present the results when
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�1 = 1=3:
10

In this case, the regulator uses the information revealed on travelers�value
of time to assess more adequately travelers�MU of income and price in a way
to extract as much travelers�surplus as possible and transfer it to the bene�t of
the transportation provider. This result is especially obvious in Model 3. For
comparison purposes with the current pricing strategy, we report car and bus
simulated unit prices and subscription amounts for three arbitrary chosen types
of travelers: travelers whose VOT is very high (� = 0:25), travelers whose VOT
is average (� = 1

1+b� ) and travelers whose VOT is low (� = 0:75).
The current regulator underestimates the VOT of travelers and as a conse-

quence does not charge them for the social marginal cost they generate: indeed,
the current average bus trip fares of 0.94 Euros and 1.01 Euros for peak and o¤-
peak times respectively are of comparable magnitude with Model 3 simulated
prices of 0.8 Euros and 0.82 Euros for a type � = 0:75; however the two-days sub-
scription fee of 0.15 Euros and 0.05 Euros for peak hours and o¤-peak hours,
respectively, would be greatly underestimated. The models predict that the
sample average type traveler (� = 1

1+b� ' 0:6) should optimally be charged the
unit prices of 3.38 Euros and 4.23 Euros and a two-days subscription fee of 2.67
Euros and 3.26 Euros respectively during peak and o¤-peak periods.
Interestingly, Table 5-2 reports welfare results associated to homogenous

pricing: in this case, the regulator knows the estimated average VOT of travelers
and charges them all the associated optimal fare. Results then show signi�cant
improvement in total welfare (peak and o¤-peak times combined) which respec-
tively increase by 42%, 44% and 101% respectively in Models 1,2 and 3, due to
great increase in travelers�surplus. In this case, the regulator does not have the
ability to discriminate as much as travelers, leaving them a higher surplus.
In conclusion, marginal cost pricing accounting for reputation of modes and

observed heterogeneity of travelers�sensitivity to price (Model 2) shows an over-
all improvement over the pricing scheme designed in Viauroux (2007) by about
12%. In the case where regulator and transportation provider share common
objectives, results show that welfare is reduced when too much heterogeneity is
accounted for. However, great welfare improvement can be achieved by imple-
menting a homogenous pricing that accurately accounts for travelers VOT.

6 Conclusion

We undertake a disaggregated approach to estimated transportation demand
structural parameters, accounting for the fact that tra¢ c congestion is endoge-
nous and can be represented as a Bayesian Nash game between travelers. In
this framework we introduced two types of private information: information on
the reputation of each mode of transportation and information on the VOT, e.g.
aversion to tra¢ c congestion. Using a cross-sectional two-day period data set,

10Note that in Models 1 and 2, assuming �1 > 1=2 implies that s� is in�nite (see above
comments on Proposition 4). Simulation of Model 3 welfare results in case �1 > 1=2 is
available from the author.
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we estimate and compare the results using di¤erent assumptions on the MU of
income. We �nd that reputation is an important determinant in the decisions
of traveling, particularly in the choice of the mode of transportation and that
improving the reputation of public transportation could improve the frequency
of trips during peak hours. Contrary to the non-random analysis of Viauroux
(2007), results show that welfare can be reduced when too much heterogeneity
is accounted for in the transportation pricing. However, great welfare improve-
ment can be achieved by implementing a homogenous pricing that accurately
accounts for travelers VOT.
Among the directions for future research, the use of panel data could im-

prove the outcome even further. It would allow the individuals�preferences for
traveling to depend not only on the current anticipation of congestion but also
on all other travelers�experience of congested areas via their optimal behavior
from any point in time onward.

7 Appendix 1. Derivation of the optimal tari¤

We denote by � the randomized-strategy pro�le for the game

� =

�
I;Q;�; (pi;t)i2I;t2T ;

�
uji;t

�
i2I;t2T

�
;

such that
� = (�i (qi;tj�i))i2I;qi;t2Q;�i2�;t2T ;

where �i (qi;tj�i) represents the conditional probability that traveler i would do
qi;t trips if his type were �i (see Myerson, 1991). At a Nash equilibrium �, one
may compute for each i 2 I and �i 2 � the expected number of trips for traveler
i by the formula

q�i;t (�i) =
X
qi;t2Q

qi;t�i(qi;tj�i):

Henceforth, the parameter of aversion to tra¢ c is assumed to be independently
and identically distributed in the population according to a Beta (1; �) distri-
bution for its simplicity of use and the variety of forms it can represent (ex-
ponential, uniform). We recall that, by de�nition of the equilibrium (see also
Viauroux, 2007), for any �xed i; r and � 2 �, putting

s��i = s�i
�
qc��i;t

�
for brevity, the probabilities �i(qi;tj�i) have to maximize the expressionX

qi;t2Q
�i(qi;tj�i)U ji;t(qi;t; q��i;t; �);
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where the functions Ui;t are given by the formula

Ui;t = Ui;t(qi;t; q
�
�i;t;  i;t; �i;t; �i; "i;t)

= �cqci;t[1 +  
c
i;t + ln �i � ln s�i;t � ln qci;t + "ci;t]

+�b
JX
j=1

qbji;t

h
1 +  bi;t + ln �i � ln s�i;t � ln q

bj
i;t + "

bj
i;t

i
+�wqwi;t[1 + ln �i � ln s�i;t � ln qwi;t + "wi;t]
+hi�i;t

This de�nition leads to a pure multistrategy equilibrium corresponding to the
value of qi;t, which maximizes Ui;t(qi;t; q��i;t; �).

Proof. In order to simplify the computation, let us admit that the variable qi;t
can be changed continuously, and let us write down the �rst-order conditions
associated with the maximization of (3) subject to (4). Both partial derivatives
with respect to qci;t and q

bj
i;t must vanish at the equilibrium point, namely,

�c
�
 ci;t + ln �i � ln s��i;t � ln qc�i;t + "ci;t

�
� hipci;t = 0; (48)

�b
h
 bi;t + ln �i � ln s��i;t � ln q

bj�
i;t + "

bj
i;t

i
� hipbji;t = 0 (49)

Solving for qc�i;t and q
bj�
i;t , we obtain the �rst two equalities of Proposition 1:

qc�i;t(�i; "
c
i;t) =

�i
s��i;t

e 
c
i;t�

hip
c
i;t

�c +"ci;t ; (50)

qbj�i;t (�i; "
bj
i;t) =

�i
s��i;t

e 
b
i;t�

hip
bj
i;t

�b
+"bji;t : (51)

In order to determine the value of s��i;t, integrate both parts of (50) with
respect to �i of density f(�i); we obtain

s��i;t(q
c�
�i;t) =

1

I � 1
X
k2I�i

Z
�k2�

Z
"rk;p

qc�k (�k; "
c
k;p)dF ("

c
k;p)dFk(�k)

Assuming that one individual is negligible in the continuum of individuals so
that s��i;t = s��j;p and given that E("

c
i;t) = 0 8i; we have that

s��i;t =
1

I � 1
X
k2I�i

Z
�k2�

Z
"ck;p

�
�k
s�
e 

c
k�

hip
c
k

�c +"ck;p

�
dF ("ck;p)dFk(�k)

�
s��i;t

�2 � 1

I

X
k2I

Z
�k2�

+1Z
�1

�ke
 ck�

hip
c
k

�c +"ck;pdFk(�k)dF ("
c
k;p)
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Assuming that "ck;p follows an exteme value type I distribution with para-
meters (1; �1) with density

f("ck;p) = �1e
��1"ck;pe�e

��1"ck;p
; �1 > 0;

then
+1Z
�1

e"
c
k;pdF ("ck;p) = �1

+1Z
�1

e(1��1)"
c
k;pe�e

��1"ck;p
d"ck;p

Let assume Y = e��1"
c
k;p or e"

c
k;p = (Y )

� 1
�1 , then

+1Z
�1

e"
c
k;pdF ("ck;p) =

+1Z
0

Y

�
1� 1

�1

�
e�Y dY

=

�
1� 1

�1

�
! = �

�
2� 1

�1

�
where � (:) is the gamma function.
In the case of complete information, the proof always remains the same,

except the determination of s�p, where we do not have to integrate over �. Then
we obtain

�
s��i;t

�2
=

�
�
2� 1

�1

�
I � 1

X
j2I�i

�je
 cj�

hjp
c
j;p

�c

�
�
�
2� 1

�1

�
I

X
j2I

�je
 cj�

hjp
c
j;p

�c :

Proof of Proposition 2. Case 1: 0 < �1 < 1=2:
This problem enters the convex optimization framework of the Kuhn�Tucker

theorem. However, we can also solve it directly as follows.
Let us rewrite the social value function in the form

U(q; a; �) = (2�1 � 1)S(q; a; �) + (1� �1)W (q):

For any given qri;t , since 2�1 � 1 < 0, the maximum is achieved if the numbers
ari;t are chosen so as to make S(q; a; �) as small as possible. The best choice is
obtained by requiring Sri;t = 0 for all i, proving (33). Then we have to maximize
W (q) with respect to qri;t . Since this function is concave and di¤erentiable, the
maximum is achieved if and only if its �rst partial derivatives all vanish, i.e.,

�r

h(�i)

�
 ri;t + ln �i � ln s��i;t � ln qri;t + "ri;t

�
� crp = 0:
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for every i. This implies (??) and that pri;t
�
qri;t
�
= crp. It follows that

Sri =

�
�r

h(�i)
+ pri;t � crp

�
qci;t � ari;t

for every i choosing option r, and therefore the condition Sri = 0 implies (32).
Equations (34) and (35) then follow by de�nition.
Case 2: 1=2 < �1 < 1:
Writing

U(q; a; �) = (2�1 � 1)S(q; a; �) + (1� �1)W (q; �)

again, we see that for any given q this expression takes its largest value when
S is biggest. This leads to the conditions (36) and to the equality

U(q; 0; �) = �1
X
i

�
Ur � pri;tqri;t

�
:

where

Ur :=

Z
"ri;t

�
�r

h(�i)
qri;t[1 +  

r
i;t + ln �i � ln s��i;t � ln qri;t + "ri;t]

�
dF ("ri;t)

Maximizing the last expression with respect to the variables qri;t we obtain
the following conditions:

�r

h(�i)
[ ri;t + ln �i � ln s��i;t � ln qri;t + "ri;t] =

2�1 � 1
�1

pri;t +
1� �1
�1

crp: (52)

Denote by Wqr the partial derivative of W with respect to qr: Equation
(22) implies that Wqr = pri;t � crp: This implies that the left hand side of these
equalities is equal to pri;t and that p

r
i;t = crp leading to (31). Furthermore,

substituting (31) into the de�nition of Sri and using the conditions a
r
i;t = 0 we

obtain (37) and (38). Finally, for any positive function h(:) the participation
constraints (28) are satis�ed.

Proof of Proposition 3. Since the functions Si are di¤erentiable and concave
in qri;tand a

r
i;t, condition (42) is equivalent for each i to the following �rst-order

condition:

@qri;t(�; "
r
i;t)

@�i

�
�r

h(�i)

�
 ri;t + ln �i � ln s��i;t � ln qri;t(�; "ri;t) + "ri;t

�
� pri;t

�
�
@ai;t(�; "

r
i;t)

@�i
= 0:

Hence

@Sri
@�i

(qi;t(�; "
r
i;t); s

�
�i;t; ai;t(�; "

r
i;t); �i) = Vi(q

r
i;t(�; "

r
i;t); �i; "

r
i;t)
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and therefore

Sri (q
r
i;t(�; "

r
i;t); s

�
�i;t; a

r
i;t; �i; "

r
i;t) = Sri (qi;t(��i; �i); s

�
�i;t; a

r
i;t(��i; �i); �i; "

r
i;t)(53)

+

Z �i

�i

Vi(qi;t(��i; ~�i; "
r
i;t);

~�i)d~�i:

Substituting this expression into the de�nition of U we obtain the following
equality:Z
�

U(q(�); a(�); �)f(�) d�

=

Z
�

0BBB@ �1

0B@PI
i=1

Z
"ri;t

Sri (qi;t(�; "
r
i;t); s

�
�i;t; a

r
i;t(�); �i)dF ("

r
i;t)

1CA
+(1� �1)�(q(�); a(�))

1CCCA f(�) d�

=

Z
�

0BBB@ (2�1 � 1)

0B@PI
i=1

Z
"i;t

Sri (q
r
i;t(�; "

r
i;t); s

�
�i;t; a

r
i;t(�); �i)dF ("

r
i;t)

1CA
+(1� �1)W (q(�); �)

1CCCA f(�) d�

=

Z
�

�
(2�1 � 1)

� IX
i=1

Z
"ri;t

Sri (qi;t(��i; �i; "
r
i;t); s

�
�i;t; a

r
i;t(��i; �i; "

r
i;t); �i)dF ("

r
i;t)

+

Z �i

�i

Vi(qi;t(��i; ~�i; "
r
i;t);

~�i) d~�i

�
+ (1� �1)W (q(�); �)

�
f(�) d�:

Integrating by parts we haveZ �i

�i

Z �i

�i

Vi(qi;t(��i; ~�i); ~�i; "
r
i;t) d

~�ifi(�i) d�i =

Z �i

�i

Vi(qi;t(�; "
r
i;t); �i)(1�Fi(�i)) d�i:

Using this relation we may rewrite the previous equality in the following form:Z
�

U(q(�); a(�); �)f(�) d�

=

Z
�

Z
"i;t

�
(2�1 � 1)

� IX
i=1

Si(qi;t(��i; �i); s
�
�i;t; ai;t(��i; �i); �i)

+ Vi(qi;t(�; "
r
i;t); �i)

1� Fi(�i)
fi(�i)

�
+ (1� �1)W (q(�); �)

�
dF ("ri;t)f(�) d�:

We are going to maximize pointwise the function under the integral sign.
Since �1 < 1=2 by assumption, for any given values of q(�; "ri;t) we have to
choose ari;t(�) so as to minimize the nonnegative term

Sri (q
r
i;t(��i; �i); s

�
�i;t; a

r
i;t(��i; �i); �i; "

r
i;t):
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We choose ai;t(��i; �i; "i;t) such that

Sri (q
r
i;t(��i; �i); s

�
�i;t; a

r
i;t(��i; �i); �i; "

r
i;t) = 0: (54)

Using the relations (54), these formulae reduces to the following:Z
�

U(q(�); a(�); �)f(�) d� =

Z
�

Z
"ri;t

�
(2�1 � 1)

� IX
i=1

Vi(qi;t(�; "
r
i;t); �i)

1� Fi(�i)
fi(�i)

�
(55)

+(1� �1)W (q(�); �)
�
dF ("ri;t)f(�) d�:

It remains to maximize the function under the integral sign on the right-hand
side. A straightforward computation yields

@Vi(q
r
i;t(�; "

r
i;t); �i)

@qri;t(�; "
r
i;t)

=
�r

�ih(�i)
� �rh0(�i)

h2(�i)
[ ri;t + ln �i � ln s��i;t � ln qri;t(�; "ri;t) + "ri;t];

@W (qri;t(�; "
r
i;t); �)

@qri;t(�; "
r
i;t)

=
�r

h(�i)
[ ri;t + ln �i � ln s��i;t � ln qri;t(�; "ri;t) + "ri;t]� crp:

and therefore the following �rst-order conditions (solving the problem point-
wise):

�r

h(�i)
[ ri;t + ln �i � ln s��i;t � ln

�
qri;t(�; "

r
i;t)
�
+ "ri;t] = cri1(�i; "

r
i;t): (56)

Solving this system we obtain (43). Using these results, we deduce from (22)
and (54) that

ai;t(�; "
r
i;t) =

�r

h(�i)

�
qri;t
�
[1 +  ri;t + ln �i � ln s��i;t � ln

�
qri;t
�
+ "ri;t]� pri;tqri;t

�
Z �i

�i

Vi(qi;t(��i; ~�i); ~�i; "
r
i;t) d

~�i:

It follows from (53) and (56) that

Vi(qi;t(�; "i;t); �i; "i;t) = qri;t(�; "1i)

�
�r

�ih(�i)
� �rh0(�i)

h2(�i)
� h0(�i)

h(�i)
cri1(�i; "

r
i;t)

�
(57)

Since all factors in this expression are nonnegative by (42), the participation
constraints (40) follow from (42).

Proof of Proposition 4. By repeating the �rst part of the proof of the
preceding proposition, we are led again to the maximization of the integral
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(55). If � 2 � satis�es �i > �i for all i, then our former reasoning still leads to
the �rst-order conditions (56). Since almost all points � 2 � have this property,
we can still solve this system and we obtain (45). Furthermore, since each Si is
a decreasing function of ai;t, it remains to show that by choosing ai;t(�; "ri;t) =
0 the participation constraints are satis�ed. Finally, the nonnegativity of Si
follows from its explicit formulae

S(qri;t
�
�; "ri;t

�
; s��i;t; ai;t(�; "

r
i;t); �i; "

r
i;t) =

�r

h(�i)
qri;t:
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8 Appendix 2: Estimation Procedure

Recall that R is the set of all possible choices of modes and fare categories
R �fc; (b; 1) ; (b; 2) ; :::; (b; J) ; wg . We denote by r, the typical element, r =
1; :::J + 2: Using these notations, (1) can be written:

Ui;t =
J+2X
r=1

�rqri;t[1 +  
r
i;t + ln �i � ln s�i;t � ln qri;t + "ri;t] + h (�i) �i;t

Recall that the discrete choice of which mode of transportation to select can
be represented by a set of binary valued indices �ri;t = �ri;t

�
ai;t; pi;t; wi;  i;t; �i; s

�
�i;t; "i;t

�
; where

�ri;t = 1 if V
r

i;t (�i) > V
r0

i;t (�i) 8r0 6= r (58)

= 0 otherwise

The relationship between these unconditional functions and the correspond-
ing conditional ones above is that:

qri;t(�i;  i;t; s
�
�i;t; "i;t) = �ri;tq

r
i;t(�i;  

r
i;t; s

�
�i;t; "i;t) (59)

and
Vi;t = max

V
r
i;t

(V
1

i;t; V
2

i;t; :::; V
J+1

i;t ): (60)

Hence, the discrete choice indices are random variables, with mean E
�
�ri;t
�
=

P ri;t (�i) ; with, 8r0 6= r;

P ri;t (�i) = Pr ob
�
V
r

i;t (�i) > V
r0

i;t (�i) 8r0 6= r
�

= Pr ob

0B@ �r �i
s��i

e 
r
i;t�

h(�i)p
r
i;t

�r +"ri;t + h(�i)
�
wi � ari;t

�
> �r

0 �i
s��i

e
 r

0
i;t�

h(�i)p
r0
i;t

�r
0 +"r

0
i;t + h(�i)[wi � ar

0

i;t]

8r0 6= r

1CA

= Pr ob

0B@ �re 
r
i;t�

h(�i)p
r
i;t

�r +"ri;t � ari;th(�i)
s��i
�i

> �r
0
e
 r

0
i;t�

h(�i)p
r0
i;t

�r
0 +"r

0
i;t � ar0i;th(�i)

s��i
�i

8r0 6= r

1CA
' Pr ob

0B@ �r
�
1 +  ri;t �

h(�i)p
r
i;t

�r + "ri;t

�
� ari;th(�i)

s��i
�i

> �r
0
�
1 +  r

0

i;t �
h(�i)p

r0
i;t

�r0
+ "r

0

i;t

�
� ar0i;th(�i)

s��i
�i

8r0 6= r

1CA
= Pr ob

�
�ri;t (�i) + �

r"ri;t > �r
0

i;t (�i) + �
r0"r

0

i;t 8r0 6= r
�

(61)

where the fourth line uses a �rst-order Taylor approximation of the expo-
nentional function, and

�ri;t (�i) � �r + �r ri;t � h (�i) pri;t � ari;th(�i)
s��i
�i
:
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Throughout this section, I assume that "ri;t 8r are independently and iden-
tically distributed according to the Extreme Value type I distribution G (0; �1)
so that �r"ri;t � G

�
0; �1�r

�
: Hence, their joint cumulative distribution function

is

F�" = exp

"
�
J+1X
r=1

exp(��1
�r
"ri;t)

#
Let F r�" be the derivative of F�" with respect to the r

th component, then

P ri;t (�i) =

+1Z
�1

F r�"(t+ �
r
i;t (�i)� �1i;t (�i) ; :::; t+ �ri;t (�i)� �J+1i;t (�i))dt

with

F r�"(t+�
r
i;t (�i)��1i;t (�i) ; :::; t+�ri;t (�i)��J+1i;t (�i)) =

�1
�r
e�

�1
�r t exp(��ri;te�

�1
�r t)

and

�ri;t (�i) = e�
�1
�r �

r
i;t(�i)

J+2X
r0=1

e
�1
�r �

r0
i;t(�i):

Hence,

P ri;t (�i) =
�1
�r

+1Z
�1

e�
�1
�r t exp(��ri;t (�i) e�

�1
�r t)dt

=
�
�ri;t (�i)

��1
=

e
�1
�r �

r
i;t(�i)

J+1X
r0=1

e�
�1
�r �

r0
i;t(�i)

=
e
�1
�r

�
�r+�r ri;t�h(�i)p

r
i;t�a

r
i;th(�i)

s��i
�i

�
J+2X
r0=1

e
�1

�r
0

�
�r0+�r0 r

0
i;t�h(�i)pr

0
i;t�ar

0
i;th(�i)

s��i
�i

� :

Let Ari;t (�i) =
n
�"j�ri;t (�i) + �r"ri;t > �r

0

i;t (�i) + �
r0"r

0

i;t;8r0 6= r
o
: Then the

conditional marginal density of vector �" is:

f�"j�"2Ar
i;t

=
F r" (t+ �

r
i;t (�i)� �1i;t (�i) ; :::; t+ �ri;t (�i)� �J+1i;t (�i))

P ri;t (�i)

=
�1
�r
�ri;t (�i) e

� �1
�r "

r
i;t exp(��ri;t (�i) e�

�1
�r "

r
i;t):
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Moreover,

qri;t =
�i
s��i

e 
r
i;t�

h(�i)p
r
i;t

�r +"ri;t ; 8r;

which with  ri;t �
h(�i)p

r
i;t

�r =
�ri;t(�i)+a

r
i;th(�i)

s��i
�i

�r � 1; is equivalent to

"ri;t = ln
qri;ts

�
�i

�i
�
�ri;t (�i) + a

r
i;th(�i)

s��i
�i

�r
+ 1:

Finally, using a change in variable from "j to qj , we have:

fqri;tj�"2Ar
i;t
(q (�i)) =

�1
�r
�ri;t (�i) e

� �1
�r

0@ln qs��i
�i

�
�ri;t(�i)+a

r
i;th(�i)

s��i
�i

�r +1

1A

� exp

2664��ri;te�
�1
�r

0@ln qs��i
�i

�
�ri;t(�i)+a

r
i;th(�i)

s��i
�i

�r +1

1A3775

=
�1
�r

J+2X
r0=1

e
�1

�r
0 �

r0
i;t(�i)

e
�1
�r �

r
i;t(�i)

�
qs��i
�i

�� �1
�r

e
� �1
�r

0@1��ri;t(�i)+a
r
i;th(�i)

s��i
�i

�r

1A

� exp

2666664�
J+1X
r0=1

e
�1

�r
0 �

r0
i;t(�i)

e
�1
�r �

r
i;t(�i)

�
qs��i
�i

�� �1
�r

e
� �1
�r

0@1��ri;t(�i)+a
r
i;th(�i)

s��i
�i

�r

1A
3777775 :

Note that

E
�
qri;tj" 2 Ari;t

�
=

�i
s��i

e 
r
i;t�

h(�i)p
r
i;t

�r E
h
e"

r
i;t j" 2 Ari;t

i
=

�i
s��i

e 
r
i;t�

h(�i)p
r
i;t

�r �ri;t (�i) �

�
1� 1

�
t

�
;

where the second equality is derived from the moment generating function of
a univariate Extreme Value distribution with scale parameter �1

�r and location
parameter �1

�r ln�
r
i;t :

E
�
et"

r
i;t j" 2 Ari;t

�
=
�
�ri;t (�i)

� �1
�r t �

�
1� �r

�1
t

�
Let r� denote the index for the mode of transportation and type of payment

selected by the ith individual, let qr�i;t be his observed number of trips. Then,
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L =
NY
i=1

�Z
�

fqr�i;t
�
qr�i;t (�i)

�
dFi(�i);

=
NY
i=1

�Z
�

fqr�i;tj"2Ar
i;t

�
qr�i;t (�i)

�
P ri;t (�i) dFi(�i):
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9 Appendix 3. Tables and Figures

Figure 1a: Number of car trips by income range

[Insert Figure 1a here]

Figure 1b: Number of bus trips by income range

[Insert Figure 2a here]
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Table 1: Estimation results, Peak Period (standard errors in parentheses).

V ariable EER(07) Mod. 1 Mod. 2 Mod. 3
MU:car
(�1)

0:895�

(0:012)
1:213�

(0:141)
1:221�

(0:140)
1:153�

(0:122)
MU: Bus
(�2)

0:105�

(0:012)
0:746�

(0:082)
0:774�

(0:081)
0:728�

(0:087)
Distr: �
(�)

0:300�

(0:002)
0:646�

(0:034)
0:646�

(0:031)
0:684�

(0:032)
MU Inc:

(h
I
0); (h

�
0)

1:941�

(0:259)
0:011�

(0:001
0:011�

(0:001)
0:021�

(0:002)

MU Inc:

(h
I
1),(h

�
1)

� � � �
0:020�

(0:004)
� �

MU Inc:

(h
I
2)

� � � �
0:006
(0:005)

� �

Dist: "i
(�1)

� �
4:630�

(0:380)
4:652�

(0:409)
4:364�

(0:427)
B:Const:

(�
b
1)

1:618�

(0:177)
0:532�

(0:154)
0:533�

(0:152)
0:513�

(0:194)

B:Freq:

(�
b
2)

0:106�

(0:017)
0:067�

(0:009)
0:066�

(0:009)
0:069�

(0:009)

B: Dist:

(�
b
3)

�0:011
(0:015)

�0:014�
(0:008)

�0:014�
(0:008)

�0:011
(0:008)

B:T ime

(�
b
4)

0:005�

(9
�4
)

0:003�

(5
�4
)

0:003�

(5
�4
)

0:003�

(5
�4
)

B:Stud:

(�
b
5)

0:444�

(0:104)
:019
(0:096)

0:004
(0:091)

�0:008
(0:116)

B:Unemp:

(�
b
6)

� �
0:050
(0:088)

0:034
(0:083)

0:038
(0:099)

B:Age

(�
b
7)

� �
�0:004�
(0:002)

�0:003�
(0:002)

�0:004�
(0:002)

C:Const:
(�
c
1)

1:518�

(0:179)
0:916�

(0:141)
0:910�

(0:143)
0:842�

(0:163)
C:Power
(�
c
2)

0:034�

(0:006)
0:034�

(0:005)
0:034�

(0:005)
0:032�

(0:005)
C:Dist:
(�
c
3)

0:082�

(0:009)
0:002
(0:007)

0:003
(0:007)

0:021�

(0:009)

C:T ime
(�
c
4)

5�4

(7
�4
)

7�4�

(4
�4
)

7�4�

(4
�4
)

7�4�

(4
�4
)

C:Stud
(�
c
5)

�0:490�
(0:099)

�0:265�
(0:080)

�0:272�
(0:078)

�0:297�
(0:086)

C:Unemp:
(�
c
6)

�0:200�
(0:093)

�0:114�
(0:079)

�0:123�
(0:076)

�0:124�
(0:079)

C:Age
(�
c
7)

0:048�

(0:009)
0:028�

(0:006)
0:028�

(0:028)
0:032�

(0:006)

(C:Age)
2

(�
c
8)

�6�4�
(1
�4
)

�4�4�
(1
�4
)

�4�4�
(1
�4
)

�4�4�
(1
�4
)

Log L. -7.7 -157.04 -157.04 -157.0339



Table 2: Estimation results, O¤-Peak Period (standard errors in parentheses).

Variable EER(07) Mod. 1 Mod. 2 Mod. 3
MU.car
(�1)

0.894�

(0.010)
1.739�

(0.144)
1.678�

(0.136)
2.133
(1.870)

MU.Bus
(�2)

0.106�

(0.010)
1.107�

(0.070)
1.119�

(0.069)
1.191�

(0.698)
Distr:�

(�)

0.386�

(0.003)
0.642�

(0.050)
0.638�

(0.050)
0.572�

(0.244)
MU Inc.
(hI0),(h

�
0)

2.286�

(0.283)
0.013�

(9�4)
0.013�

(0.001)
0.025
(0.017)

MU Inc.
(hI1),(h

�
1)

� � � �
0.020�

(0.004)
� -

MU Inc.
(hI2)

� � � �
0.009�

(0.012)
� �

Dist: "i
(�1)

� �
7.561�

(0.545)
7.382�

(0.521)
7.2269�

(1.842)
B.Const.
(�b1)

0.058
(0.192)

0.686�

(0.081)
0.666�

(0.082)
0.534
(0.482)

B.Freq.
(�b2)

0.206�

(0.024)
0.054�

(0.007)
0.056�

(0.007)
0.058�

(0.018)
B.Dist.
(�b3)

0.078�

(0.019)
0.002
(0.006)

5�4

(0.006)
0.012
(0.032)

B.Time
(�b4)

-0.001
(0.002)

-4�4

(3�4)
-4�4

(3�4)
2�4

(8�4)
B.Student
(�b5)

0.348�

(0.132)
-0.020
(0.037)

-0.010
(0.037)

-0.082
(0.331)

B.Unemp.
(�b6)

� �
-0.110�

(0.042)
-0.079�

(0.041)
-0.130
(0.092)

B.Age
(�b7)

� �
-0.007�

(6�4)
-0.007�

(6�4)
-0.007
(0.004)

C.Const.
(�c1)

0.620�

(0.204)
0.965�

(0.067)
0.958�

(0.068)
0.868�

(0.377)
C.Power
(�c2)

0.048�

(0.009)
0.021�

(0.003)
0.021�

(0.003)
0.019
(0.015)

C.Dist.
(�c3)

0.125�

(0.011)
0.038�

(0.005)
0.038�

(0.005)
0.055�

(0.027)
C.Time
(�c4)

-0.012�

(9E�4)
-0.002�

(2�4)
-0.002�

(2�4)
-0.001
(0.001)

C.Student
(�c5)

-0.416�

(0.118)
-0.235�

(0.036)
-0.233
(0.037)

-0.329
(0.293)

C.Unemp.
(�c6)

-0.220�

(0.078)
-0.273�

(0.037)
-0.250
(0.037)

-0.310�

(0.084)
C.Age
(�c7)

0.026�

(0.009)
0.008�

(0.002)
0.008
(0.002)

0.006
(0.010)

(C:Age)2

(�c8)
-4�4�

(1�4)
-2�4�

(3�5)
-2�4

(3�5)
-2�4

(1�4)
Log L. -6.6 -376.38 -376.38 -376.36

40



Table 3: T-tests Peak/Non-Peak Period.
V ariable EER(07) Mod. 1 Mod. 2 Mod. 3

MU:car (�1) 0.057 -2.612 -2.349 -0.523
MU: Bus (�2) 0.057 -3.350 -3.261 -0.657
Distr: � (�) -22.183 0.073 0.122 0.455
MU Inc:(h0) -0.901 -1.243 -1.284 -0.255
MU Inc:

(h
I
1)or(h

�
1)

� � � � -0.003 � �

MU Inc: (h
I
2) � � � � -0.239 � �

Dist: "i (�1) � � -4.409 -4.125 -1.514

B:Const: (�
b
1) 5.975 -0.904 -0.772 -0.041

B:Freq: (�
b
2) -3.466 1.145 0.905 0.542

B:Dist: (�
b
3) -3.622 -1.573 -1.533 -0.705

B:T ime (�
b
4) 3.323 6.276 6.015 3.167

B:Stud: (�
b
5) 0.571 0.375 0.150 0.209

B:Unemp: (�
b
6) � � 1.637 1.217 1.240

B:Age (�
b
7) � � 1.773 1.832 0.646

C:Const: (�
c
1) 3.309 -0.314 -0.304 -0.063

C:Power (�
c
2) -1.352 2.405 2.355 0.780

C:Dist: (�
c
3) -3.023 -4.167 -3.981 -1.204

C:T ime (�
c
4) 11.753 5.945 5.852 1.326

C:Student (�
c
5) -0.484 -0.336 -0.459 0.105

C:Unemp: (�
c
6) 0.162 1.826 1.498 1.613

C:Age (�
c
7) 1.760 3.155 3.125 2.078

(C:Age)
2
(�
c
8) -1.414 -2.651 -2.578 -1.432
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Table 4-1: Welfare, peak period,�1 = 1
2 :

Current EER(07) Mod. 1 Mod. 2 Mod. 3�
qci;t
�cp 3:26

(3:23)
3:07
(1:25)

1:27
(0:29)

1:26
(0:30)

1:27
(0:33)�

qbji;t

�cp 0:58
(1:49)

1:01
(0:93)

0:64
(0:13)

0:64
(0:13)

0:60
(0:13)�

qci;t
�opt:

� �
2:93
(1:37)

1:30
(0:28)

1:30
(0:29)

1:33
(0:33)�

qbji;t

�opt
� �

0:84
(0:32)

0:63
(0:13)

0:63
(0:13)

0:59
(0:12)

ai;t
0:15
(0:47)

16:97
(7:49)

0 0 0

pci;t
2:01
(1:79)

1:07 1:07 1:07 1:07

pbji;t
0:94
(0:33)

0:76 0:76 0:76 1:07

�total
4847
(2:77)

63207
(8:82)

0 0 0

Stotali;t � �
13709
(2:11)

64022
(5:08)

65358
(7:03)

40663
(3:68)

Welfare � �
76917
(10:83)

64022
(5:08)

65358
(7:03)

40663
(3:68)

Prices and welfare are in euros. Subscription covers a two days period only.

Table 4-2: Welfare, o¤- peak period, �1 = 1
2 :

Current EER(07) Mod. 1 Mod. 2 Mod. 3�
qci;t
�cp 1:15

(1:76)
1:09
(1:18)

0:80
(0:27)

0:81
(0:28)

0:76
(0:27)�

qbji;t

�cp 0:26
(0:91)

0:44
(0:58)

0:59
(0:13)

0:59
(0:13)

0:56
(0:11)�

qci;t
�opt:

� �
1:08
(1:17)

0:82
(0:28)

0:83
(0:29)

0:79
(0:28)�

qbji;t

�opt
� �

0:40
(0:29)

0:59
(0:12)

0:59
(0:12)

0:56
(0:10)

ai;t
0:05
(0:30)

5:18
(5:44)

0 0 0

pci;t
2:18
(1:50)

1:07 1:07 1:07 1:07

pbji;t
1:01
(0:21)

0:76 0:76 0:76 0:76

�total
5980
(2:65)

20163
(6:66)

0 0 0

Stotali;t � �
4932
(1:67)

49935
(6:46)

49090
(6:59)

35429
(4:98)

Welfare � �
25096
(8:30)

49935
(6:46)

49049
(6:59)

35429
(4:98)
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Table 5-1 : Welfare, heterogenous pricing, �1 = 1
3

(1)
:

Mod. 1 Mod. 2 Mod. 3 Mod. 1 Mod. 2 Mod. 3
Peak Peak Peak O¤-P. O¤-P. O¤-P.�

qci;t
�opt: 1:12

(0:24)
1:12
(0:25)

1:18
(0:29)

0:71
(0:24)

0:71
(0:25)

0:71
(0:25)�

qbji;t

�opt: 0:54
(0:11)

0:55
(0:11)

0:53
(0:11)

0:51
(0:11)

0:50
(0:11)

0:50
(0:09)�

aci;t
���

�= 1
1+b�

0(2) 0(2) 9.06 0(2) 0(2) 8.08�
aci;t
���

�=0:25
0(2) 0(2) 2.69 0(2) 0(2) 1.28�

aci;t
���

�=0:75
0(2) 0(2) 12.58 0(2) 0(2) 10.54�

abji;t

����
�= 1

1+b�
0(2) 0(2) 2.67 0(2) 0(2) 3.26�

abji;t

����
�=0:25

0(2) 0(2) 0.90 0(2) 0(2) 0.69�
abji;t

����
�=0:75

0(2) 0(2) 3.61 0(2) 0(2) 4.21�
pci;t
���
�= 1

1+b� 9.38 9.56 5.24 11.14 10.88 7.34�
pci;t
���
�=0:25

39.64 40.55 22.73 48.11 47.17 36.92�
pci;t
���
�=0:75

5.35 5.45 1.13 6.29 6.19 1.18�
pbji;t

����
�= 1

1+b�
5.87 6.15 3.38 7.17 7.30 4.23�

pbji;t

����
�=0:25

24.47 25.80 14.39 30.70 31.49 20.67�
pbji;t

����
�=0:75

3.40 3.54 0.80 4.09 4.18 0.82

�total
11593
(0:92)

11829
(1:27)

41626
(3:77)

8982
(1:20)

17623
(2:28)

36789
(5:43)

Stotali;t
22844
(1:82)

23311
(2:51)

580
(0:05)

17936
(2:25)

8792
(1:22)

850
(0:66)

Welfare
34437
(2:74)

35140
(3:78)

42206
(3:82)

26918
(3:42)

26415
(3:47)

37639
(5:28)

(1)Recall that Model 1 and Model 2 are not de�ned for �1 > 1
2 ;

(2) Expression
of the subscription simpli�es to 0 in the special case of constant marginal utility
of income (with respect to �)
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Table 5-2 : Welfare, Homogenous pricing; �1 = 0:33
Mod. 1 Mod. 2 Mod. 3 Mod. 1 Mod. 2 Mod. 3
Peak Peak Peak O¤-P. O¤-P. O¤-P.�

qci;t
�opt: 1:45

(0:32)
1:45
(0:32)

1:56
(0:38)

0:66
(0:22)

0:70
(0:24)

0:57
(0:20)�

qbji;t

�opt 0:68
(0:14)

0:68
(0:13)

0:67
(0:14)

0:65
(0:13)

0:65
(0:14)

0:65
(0:12)

aci;t 0 0 9.66 0 0 8.59

abji;t 0 0 2.85 0 0 3.46

pci;t
9:38
(0)

9:56
(1:55)

5:24
(0)

11:14
(0)

10:88
(0:98)

7:34
(0)

pbji;t
5:87
(0)

6:15
(0:98)

3:38
(0)

7:17
(0)

7:30
(0:66)

4:23
(0)

�total
35533
(2:84)

36311
(3:92)

47493
(4:29)

20057
(2:53)

20862
(2:78)

35877
(5:18)

Stotali;t
17469
(1:39)

17824
(1:92)

49645
(4:51)

13789
(1:73)

13564
(1:75)

27745
(3:49)

Welfare
53003
(4:23)

54135
(5:84)

97138
(8:80)

33846
(4:17)

34426
(4:43)

63622
(8:62)
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