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Abstract. In order to treat a natural schedule matching problem related
with worker-firm matchings, we generalize some theorems of Baiou–Balinski

and Alkan–Gale by applying a fixed point method of Fleiner.

1. Introduction

Since the pioneering paper of Gale and Shapley [12] on stable matchings, many
studies have been devoted to the adaptations and the generalizations of their algo-
rithm. They have found use in diverse economic applications ranging from labor
markets to college admissions or even kidney exchanges.

In these two-sided matching markets, two sets of agents have preferences over
the opposite set: on one side of the market, there are individuals (students, interns
or employees) and on the other side there are institutions (colleges, hospitals or
firms). A “stable match” is realized when all agents have been matched with the
opposite side such that neither could obtain a more mutually beneficial match on
their own.

The original strict preference ordering assumptions proved to be too restrictive
for many real world problems. Following an influential contribution of Kelso and
Crawford [5], Roth [16] and Blair [4] made a systematic study of a more flexible
approach based on choice functions. The monograph of Roth and Sotomayor [17]
provides an overview of the state of the art up to 1990 and it still serves as an
excellent introduction to the subject. Feder [8], Subramanian [18] and Adachi [1]
discovered a close relationship between stable matchings and fixed points of set-
valued maps. Fleiner [11], [10] demonstrated that many classical results may be
obtained by a straightforward application of an old theorem of Knaster [15] and
Tarski [19], [20].

In their paper, Kelso and Crawford introduced an important substitutability prop-
erty. This, together with a special preference relation yields a choice map for which
the theory applies. Many papers have followed by adapting the theory to more
realistic and more complex problems; we cite Hatfield and Milgrom [13], Echenique
and Ovideo [6], [7], Klaus and Walzl [14] among the most recent ones: many others
figure in their references.

Baiou and Balinski [3] introduced the notion of schedule matching which made
it possible to consider, as a part of the contract not only the hiring of a particular
worker by a particular firm, but also the number of hours of employment of the
worker in the firm. In their setting, “stability” means that no pair of opposite
agents can increase their hours together either due to unused capacity or by giving
up hours with less desirable partners. They assumed that all agents have strict
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preference orderings. Alkan and Gale [2] extended their model by using incomplete
revealed preference ordering via choice functions instead.

In this paper, we generalize the notion of schedule matching of Baiou and Balinski
[3] to allow for schedule and preference constraints on each side of the market. We
define a choice map of a new kind for each agent on the acceptable opposite side
agent(s), possible days and (combinations of) restrictions or “subsets” placed on
the opposite side agent and/or days worked. In particular, our framework allows
for possible quotas placed by workers on firms and days worked, allowing him to
work part-time for different firms on the same day or on different days, excluding
some firms on some given days or excluding some days of work. In the same
manner, it allows firms to adjust their labor force on certain days depending on
their anticipated activity, or on the requirements associated to different activities
on different days (or the same day). We show that the allocation of days, firms and
workers is stable in the sense that given their schedule constraints, their preference
orderings and constraints, there is no better schedule for both parties; moreover the
stable allocation is shown to be worker optimal or firm optimal. This is done by a
new, general construction of choice maps satisfying a different kind of strengthened
substitutes condition, for which a classical fixed point theorem may be applied. We
provide the algorithm that can be used to obtain the optimal allocation: we will
solve a deliberately complex example to explain its technical execution.

The structure of the paper is the following. In Section 2 we formulate a model
problem which will motivate our research and which may have natural real-word
applications. In Section 3 we present the mathematical framework for our model.
In Section 4 we solve our model problem and we also explain how our results cover
some of the theorems of Alkan and Gale [2].

2. Schedule matching problems

In order to illustrate the novelty of the present work we begin by recalling the
first example of Gale and Shapley [12]. They considered three women: w1, w2, w3

and three men: f1, f2, f3 with the following preference orders (for brevity we set
fi+3 := fi and wi+3 := wi for all i):

• Preference order of wi: fi � fi+1 � fi+2, i = 1, 2, 3;
• Preference order of fi: wi+1 � wi+2 � wi+3, i = 1, 2, 3.

They looked for the possibilities of marrying all six people in a stable way.
Instability would occur if there were a woman and a man, not married to each
other who would prefer each other to their actual mates. It turns out that there
are three solutions:

• each woman gets her first choice: (w1, f1), (w2, f2), (w3, f3);
• each man gets his first choice: (w1, f3), (w2, f1), (w3, f2);
• everyone get her or his second choice: (w1, f2), (w2, f3), (w3, f1).

Now let us modify the problem to a simple job market problem as follows. Con-
sider three workers: w1, w2, w3 and three firms: f1, f2, f3 with the same preference
orders for hiring as above. Furthermore, assume that hiring is for two different days:
d1, d2, with the following additional preferences and requirements:

• for each worker–firm pair (wi, fj), the worker prefers d1 to d2 and the firm
prefers d2 to d1;
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• each worker may be hired by at most one firm on each given day (maybe
different firms on different days);
• each firm may hire at most two workers per day; if they hire two workers

for one given day, then they cannot hire anybody for the other day;
• no firm may hire the same worker for both days.

We are looking for a stable set of contracts, i.e., for a set S of triplets (wi, fj , dk)
having the following properties:

• each contract (wi, fj , dk) ∈ S is acceptable for both wi and fj ;
• for any other contract (wi, fj , dk) /∈ S, wi or fj (or both) prefers her/his

contracts in S to this new one.
In the following section we recall some basic results from the theory of matchings

and we construct a choice map of a new kind, well adapted to the kind of problems
we aim to solve. The solution of our model problem is then given in Section 4. The
method of our paper may be applied for much more complex problems as well.

3. Existence of stable schedule matchings

In this section we recall some basic notions from the theory of matchings.
Given a set X, we denote by 2X the set of all subsets of X. By a choice map in

X we mean a function C : 2X → 2X satisfying

(3.1) C(A) ⊂ A for all A ⊂ X.

In economic applications X is the set of all possible contracts, and for a given
set A of proposed contracts, C(A) denotes the set of accepted contracts by some
given rules of the market.

In order to ensure the existence of stable sets of contracts we impose the following
assumption on the choice maps:

Definition 3.1. A choice map C : 2X → 2X satisfies the strengthened substitutes
condition if

(3.2) A, B ⊂ X and C(A) ⊂ B =⇒ A ∩ C(B) ⊂ C(A).

This means that if a contract is rejected from some proposed set A of contracts,
then it will also be rejected from every other proposed set B which contains the
accepted contracts.

Our notion differs from the strong substitutes condition of Echenique and Ovideo
[6], [7] and of Klaus and Walzl [14] because our definition is purely set-theoretical:
we do not use any preference relations. In fact, we could introduce preference
relations leading to our choice map. But it would be artificial because already for
a small size problem we have a very large number of suitable preference relations,
and they would only hide the essential features of the problem.

The following proposition clarifies this notion:

Proposition 3.2. A choice map C : 2X → 2X satisfies the strengthened substitutes
condition if and only if it is consistent or satisfies the path independence property:

(3.3) C(A) ⊂ B ⊂ A =⇒ C(B) = C(A)

and satisfies the substitutes condition:

(3.4) A ⊂ B =⇒ A ∩ C(B) ⊂ C(A).
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Proof. Let C : 2X → 2X satisfy the strengthened substitutes condition. Then it
satisfies (3.4) because C(A) ⊂ A for every choice map.

In order to prove (3.3) first we infer from our hypothesis C(A) ⊂ B ⊂ A and
from the choice map property C(B) ⊂ B that C(B) ⊂ A. Therefore, applying (3.2)
and using both inclusions C(A) ⊂ B and C(B) ⊂ A we have

C(A) ⊂ B =⇒ A ∩ C(B) ⊂ C(A) =⇒ C(B) ⊂ C(A)

and

C(B) ⊂ A =⇒ B ∩ C(A) ⊂ C(B) =⇒ C(A) ⊂ C(B),

so that C(A) = C(B).

Now assume that C : 2X → 2X satisfies (3.3) and (3.4), and consider two sets
satisfying C(A) ⊂ B. We have to prove that A ∩ C(B) ⊂ C(A).

Since A ⊂ A ∪B, applying (3.4) we obtain that

(3.5) A ∩ C(A ∪B) ⊂ C(A).

The proof will be completed by showing that C(A ∪B) = C(B).
Using the hypothesis C(A) ⊂ B we deduce from (3.5) that A ∩ C(A ∪ B) ⊂ B

and hence that C(A ∪ B) ⊂ B. Therefore C(A ∪ B) ⊂ B ⊂ A ∪ B; applying (3.3)
we conclude that C(A ∪B) = C(B). �

Example 3.3.
(a) For any fixed set Y ⊂ X the formula C(A) := A ∩ Y defines a choice map

on X, satisfying (3.2). This example illustrates a situation where some
contracts are unacceptable to certain agents.

(b) More generally, given a finite subset Y ⊂ X, a nonnegative integer q (called
quota) and a strict preference ordering y1 � y2 � · · · on Y , we define a
map C(A) for any given A ⊂ X as follows. If Card (A∩Y ) ≤ q (the symbol
Card stands for the number of elements), then we set C(A) := A ∩ Y . If
Card (A∩ Y ) > q, then let C(A) be the set of the first q elements of A∩ Y
according to the ordering of Y . Then C : 2X → 2X is a choice map on X,
satisfying (3.2).

Choice maps of this kind are frequently used in classical matching problems such
as the marriage problem, the college admission problem and various many-to-many
matching problems; see, e.g., [2], [17] and the references of the latter.

Now assume that there are two competing sides, for example workers and firms
and correspondingly two choice functions CW , CF : 2X → 2X . We adopt here the
following equilibrium concept:

Definition 3.4. A set S of contracts is said to be stable if there exist two sets
SW , SF ⊂ X satisfying the following three conditions:

SW ∪ SF = X;(3.6)

CW (A) = S for every S ⊂ A ⊂ SW ;(3.7)

CF (A) = S for every S ⊂ A ⊂ SF .(3.8)

Stable contract sets represent acceptable compromises.
The following proposition shows that this definition is equivalent to a usual one:
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Proposition 3.5. Let CW , CF : 2X → 2X be two choice maps satisfying the
strengthened substitutes condition. Then a set S is stable if and only if it is indi-
vidually rational:

(3.9) CW (S) = S = CF (S),

and it is not blocked by any other contract, i.e., for each x ∈ X we have

(3.10) either CW (S ∪ {x}) = S or CF (S ∪ {x}) = S (or both).

Proof. If S is a stable set, then (3.9)–(3.10) follow from (3.6)–(3.8). Now assume
(3.9) and (3.10). Setting

SW := {x ∈ X : CW (S ∪ {x}) = S} and SF := {x ∈ X : CF (S ∪ {x}) = S}

we have S ⊂ SW and S ⊂ SF by (3.9), and SW ∪ SF = X by (3.10). Since CW

and CF are consistent by Proposition 3.2, it remains to show that CW (SW ) = S =
CF (SF ).

If x ∈ SW \S, then applying (3.2) and using (3.10) we deduce from the inclusion
CW (S ∪ {x}) ⊂ SW that

(S ∪ {x}) ∩ CW (SW ) ⊂ CW (S ∪ {x}) = S

and hence x /∈ CW (SW ). We have thus CW (SW ) ⊂ S. Applying (3.2) again we
deduce from this last inclusion that

SW ∩ CW (S) ⊂ CW (SW ).

Since CW (S) = S by (3.9) and since we already know that S ⊂ SW , it follows
that S ⊂ CW (SW ), so that finally CW (SW ) = S. The proof of CF (SF ) = S is
similar. �

In view of Propositions 3.2 and 3.5 the following theorem is equivalent to a
theorem of Fleiner [11], [10]:

Theorem 3.6. If the choice maps CW , CF : 2X → 2X satisfy the strengthened
substitutes condition, then there exists at least one stable set of contracts.

Remark 3.7. We recall from [11], [10] that if X is a finite set, then the proof of the
theorem provides an efficient algorithm to find a stable set. Starting with X0 := X
we compute successively Y1, X2, Y3, X4, . . . by the formulas

Yn+1 := (X \Xn) ∪ CW (Xn) and Xn+1 := (X \ Yn) ∪ CF (Yn).

There exists a first index n ≥ 1 such that Xn−1 = Xn+1, and then S := CW (Xn−1)
is the worker-optimal stable set.

Similarly, starting with Y0 := X we may compute successively X1, Y2, X3,
Y4, . . . by the same recursive formulas. There exists a first index n ≥ 1 such that
Yn−1 = Yn+1, and then S := CF (Yn−1) is the firm-optimal stable set.

In order to apply Theorem 3.6 for the solution of the problem stated in Section
2, we generalize the choice map construction of Example 3.3.

Let we are given a finite subset Y ⊂ X, a family {Yn} of subsets Yn ⊂ X, and
corresponding nonnegative integers (called quotas) q and qn. We assume that the
sets Yn ∩ Y are disjoint. Furthermore, let be given a strict preference ordering
y1 � y2 � · · · on Y . Given any set A ⊂ X, we define a non-decreasing sequence
C0(A) ⊂ C1(A) ⊂ · · · of subsets of A ∩ Y by recursion as follows. First we set
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C0(A) = ∅. If Ck−1(A) has already been defined for some k, then we set Ck(A) :=
Ck−1(A) ∪ {yk} if

yk ∈ A,

Card Ck−1(A) < q,

Card (Ck−1(A) ∩ Yn) < qn if yk ∈ Yn;

otherwise we set Ck(A) := Ck−1(A). Finally, we define C(A) := ∪Ck(A).

Remark 3.8. It follows from the construction that

C(A) ⊂ A ∩ Y ;(3.11)

Card C(A) ≤ q;(3.12)

Card (C(A) ∩ Yn) ≤ qn for all n.(3.13)

We have the following result:

Theorem 3.9. C : 2X → 2X is a choice map satisfying the strengthened substitutes
condition.

Remark 3.10.
(a) If qn ≥ q or if qn ≥ Card Yn for some n, then we may eliminate Yn and qn

without changing the construction.
(b) If there are no sets Yn, then our construction reduces to Example 3.3 (b).
(c) If, moreover, q ≥ Card Y , then our construction reduces to Example 3.3

(a). (In this case the choice of the order relation is irrelevant.)
(d) Instead of a finite subset Y ⊂ X, we can also consider arbitrary subsets

Y ⊂ X with a well-ordered preference relation: the construction and the
proof of the theorem remain valid.

(e) In the absence of the sets Yn and the quotas qn our construction is a spe-
cial case of the classical matroid greedy algorithm [9]. The latter may be
probably generalized so as to include our construction in full generality.

Example 3.11. The disjointness condition is necessary. To show this, consider the
sets X = Y = {a, b, c}, Y1 = {a, b}, Y2 = {b, c} with the quotas q = 2, q1 = q2 = 1
and the preference order a � b � c. Then for A = {b, c} and B = {a, b, c} we have
C(A) = {b} and C(B) = {a, c}, so that A ⊂ B but A ∩ C(B) 6⊂ C(A).

Proof of Theorem 3.9. The choice map C remains the same if we change each Yn to
Yn ∩ Y in the construction. The choice map does not change either if we complete
the family {Yn} with Y ′ := Y \ ∪Yn corresponding to the quota q′ := Card Y ′.
Without loss of generality we assume henceforth that {Yn} is a partition of Y , i.e.,
Y is the disjoint union of the sets Yn.

Let A, B ⊂ X be two sets satisfying C(A) ⊂ B; we have to show that if yk ∈
A ∩ C(B) for some k, then yk ∈ C(A).

First we establish by induction on j the following inequalities:

(3.14) Card (Cj(A) ∩ Yn) ≤ Card (Cj(B) ∩ Yn) for all n, j = 0, . . . , k − 1.

For j = 0 our claim reduces to the trivial equality 0 = 0. Assuming that the
inequalities hold until some j < k − 1, consider the (unique) index m for which
yj+1 ∈ Ym. For each n 6= m we have

Cj(A) ∩ Yn = Cj+1(A) ∩ Yn and Cj(B) ∩ Yn = Cj+1(B) ∩ Yn
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and therefore
Card (Cj+1(A) ∩ Yn) ≤ Card (Cj+1(B) ∩ Yn)

by our induction hypothesis. For n = m the only critical case is when

yj+1 ∈ Cj+1(A) \ Cj+1(B).

Since yj+1 ∈ C(A) implies yj+1 ∈ B and since

Card Cj(B) ≤ Card Ck−1(B) = Card Ck(B)− 1 ≤ q − 1

because yk ∈ C(B), by the construction this can only happen if

Card (Cj(A) ∩ Ym) ≤ qm − 1 and Card (Cj(B) ∩ Ym) = qm.

But then we have

Card (Cj+1(A) ∩ Ym) = Card (Cj(A) ∩ Ym) + 1
≤ qm

= Card (Cj(B) ∩ Ym)

= Card (Cj+1(B) ∩ Ym)

as required. This completes the proof of the relations (3.14).
Since yk ∈ A ∩ C(B), we have yk ∈ A. Furthermore, since C(A) ⊂ Y and the

sets Yn form a partition of Y , it follows from (3.14) that

Card Ck−1(A) = ∪nCard (Ck−1(A) ∩ Yn)

≤ ∪nCard (Ck−1(B) ∩ Yn)

= Card Ck−1(B)

= Card Ck(B)− 1
≤ q − 1.

Furthermore, in case yk ∈ Yn we have

(Ck(B) ∩ Yn) \ (Ck−1(B) ∩ Yn) = {yk}

and therefore

Card (Ck−1(A) ∩ Yn) ≤ Card (Ck−1(B) ∩ Yn)

= Card (Ck(B) ∩ Yn)− 1
≤ qn − 1.

Summarizing, the conditions (3.11)–(3.13) are satisfied and we conclude that
yk ∈ C(A) by construction. This completes the proof. �

The following result enables us to combine individual choice functions satisfying
the strengthened substitutability condition into a global choice function having the
same property.

Proposition 3.12. Given a partition X = ∪iXi of a set X and choice functions
Ci : 2Xi → 2Xi for each i, we define a choice function C : 2X → 2X by the formula

C(A) := ∪iCi(A ∩Xi).

Then C satisfies the strengthened substitutability condition if and only if each Ci

satisfies the strengthened substitutability condition.
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Proof. If C(A) ⊂ B, then setting Ai := A ∩Xi and Bi := B ∩Xi we have

A ∩ C(B) ⊂ C(A)⇐⇒ (A ∩ C(B)) ∩Xi ⊂ C(A) ∩Xi for each i

⇐⇒ Ai ∩ Ci(Bi) ⊂ Ci(Ai) for each i. �

4. Solution of the model problem

We set

W := {w1, w2, w3}, F := {f1, f2, f3}, D := {d1, d2},

and we proceed in several steps.

Step 1. For each fixed worker wi we define a choice map Cwi
on {wi} × F ×D

by applying Theorem 3.9 with Y , q, Yn, qn and the preference relations on Y
given as follows (for brevity we write (i, j, k) instead of (wi, fj , dk) in the preference
relations):

Y := {wi} × {f1, f2, f3} × {d1, d2}, q = 6,

Yk := {wi} × {f1, f2, f3} × {dk}, qk = 1, k = 1, 2,

(i, i, 1) � (i, i, 2) � (i, i + 1, 1) � (i, i + 1, 2) � (i, i + 2, 1) � (i, i + 2, 2).

We note that the quota q = 6 is ineffective.

Step 2. Applying Proposition 3.12 we combine the three choice maps of the
preceding step into a global choice map CW on W × F ×D by setting

CW (A) :=
3⋃

i=1

Cwi
(A ∩ ({wi} × F ×D))

for every A ⊂W × F ×D.

Step 3. For each firm fj we define a choice map Cfj
on W×{fj}×D by applying

Theorem 3.9 with Y , q, Yn, qn and the preference relations on Y given as follows,
still writing (i, j, k) instead of (wi, fj , dk) for brevity:

Y := {w1, w2, w3} × {fj} × {d1, d2}, q = 2,

Yi := {wi} × {fj} × {d1, d2}, qi = 1, i = 1, 2, 3,

(j + 1, j, 2) � (j + 1, j, 1) � (j + 2, j, 2) � (j + 2, j, 1) � (j, j, 2) � (j, j, 1).

Step 4. Applying Proposition 3.12 we combine the three choice maps of the
preceding step into a global choice map CF on W × F ×D by setting

CF (A) :=
3⋃

j=1

Cfj
(A ∩ (W × {fj} ×D))

for every A ⊂W × F ×D.

Step 5. Thanks to Theorem 3.9 and Proposition 3.12 the choice maps CW and
CF satisfy the hypotheses of Theorem 3.6. We apply the algorithm as described in
Remark 3.7 by starting with X0 := X and computing Y1, X2, Y3, X4 by the formulas

Yn+1 := (X \Xn) ∪ CW (Xn) and Xn+1 := (X \ Yn) ∪ CF (Yn).
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We obtain that X2 = X4 and therefore S = CW (X2). The results are summarized
in the following table:

wi fj dk X0 Y1 X2 Y3 X4 S

1 1 1 x x x
1 1 2 x x x x x x
1 2 1 x x x x x
1 2 2 x x x
1 3 1 x x x
1 3 2 x x x
2 1 1 x x x
2 1 2 x x x
2 2 1 x x x
2 2 2 x x x x x x
2 3 1 x x x x x
2 3 2 x x x
3 1 1 x x x x x
3 1 2 x x x
3 2 1 x x x
3 2 2 x x x
3 3 1 x x x
3 3 2 x x x x x x

In this worker-optimal solution each worker is hired by the second most preferred
firm for the first day and by the most preferred firm for the second day.

Step 6. Applying the algorithm of Remark 3.7 by starting with Y0 := X and com-
puting X1, Y2, X3, Y4 by the above formulas we obtain that Y2 = Y4 and therefore
S = CF (Y2). The results are summarized in the following table:

wi fj dk Y0 X1 Y2 X3 Y4 S

1 1 1 x x x
1 1 2 x x x
1 2 1 x x x
1 2 2 x x x x x x
1 3 1 x x x x x
1 3 2 x x x
2 1 1 x x x x x
2 1 2 x x x
2 2 1 x x x
2 2 2 x x x
2 3 1 x x x
2 3 2 x x x x x x
3 1 1 x x x
3 1 2 x x x x x x
3 2 1 x x x x x
3 2 2 x x x
3 3 1 x x x
3 3 2 x x x
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In this firm-optimal solution each firm hires the most preferred worker for the
first day and by the second most preferred worker for the second day.

Remark 4.1. The stable schedule matchings as studied by Baiou and Balinski [3]
and Alkan and Gale [2] enter the present framework as a special case. For simplicity
we consider the discrete case, when a contract is not only a worker-firm pair (wi, fj),
but it also contains the number of working hours. We denote by D = {1, 2, . . .} the
set of possible numbers of working hours with k meaning the kth working hour. For
each worker wi, if there is a preference ranking fj1 � fj2 � · · · among the firms,
then we extend it to the preference ranking

(i, j1, 1) � (i, j1, 2) � · · · � (i, j1, qw
i,j1)

�(i, j2, 1) � (i, j2, 2) � · · · � (i, j2, qw
i,j2)

� · · ·
...

where qw
i,j denotes the maximum number of working hours accepted by worker wi in

firm fj . Similarly, for each firm fj , if there is a preference ranking wi1 � wi2 � · · ·
among the workers, then we extend it to the preference ranking

(i1, j, 1) � (i1, j, 2) � · · · � (i1, j, q
f
i1,j)

�(i2, j, 1) � (i2, j, 2) � · · · � (i2, j, q
f
i2,j)

� · · ·
...

where qf
i,j denotes the maximum number of working hours accepted by firm fj for

worker wi. Once a stable set S found, the number of working hours of worker wi

in firm fj is the biggest integer k such that (i, j, k) ∈ S.

Acknowledgement. The authors thank the referee for several useful comments,
and to pointing out a similarity between our proof of Theorem 3.9 and the matroid
greedy algorithm.
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